首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   5篇
  国内免费   20篇
电工技术   5篇
综合类   13篇
化学工业   134篇
金属工艺   117篇
机械仪表   10篇
矿业工程   19篇
能源动力   24篇
轻工业   3篇
武器工业   2篇
无线电   16篇
一般工业技术   98篇
冶金工业   37篇
原子能技术   10篇
自动化技术   7篇
  2023年   17篇
  2022年   28篇
  2021年   17篇
  2020年   13篇
  2019年   12篇
  2018年   15篇
  2017年   14篇
  2016年   12篇
  2015年   9篇
  2014年   29篇
  2013年   18篇
  2012年   14篇
  2011年   40篇
  2010年   27篇
  2009年   24篇
  2008年   31篇
  2007年   14篇
  2006年   19篇
  2005年   14篇
  2004年   27篇
  2003年   21篇
  2002年   7篇
  2001年   5篇
  2000年   8篇
  1999年   3篇
  1998年   5篇
  1997年   16篇
  1996年   4篇
  1995年   10篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1988年   2篇
  1984年   1篇
排序方式: 共有495条查询结果,搜索用时 15 毫秒
1.
Solder alloys doped with rare-earth elements have been reported to show many beneficial effects. However, tin whiskers have been observed to appear on the surface of Sn-3Ag-0.5Cu-0.5Ce solder joints after air exposure for short periods. Such a phenomenon of abnormal whisker growth may significantly degrade the reliability of electronic packaging. The present study shows that the tin whiskers can be prevented by the addition of 0.5 wt.% Zn into a Sn-3Ag-0.5Cu-0.5Ce solder. The inhibition effect on the whisker growth is correlated to the refining of (Ce0.9Zn0.1)Sn3 intermetallics in this Sn-3Ag-0.5Cu-0.5Ce-0.5Zn alloy.  相似文献   
2.
In order to increase of the photocurrent, photovoltage and energy conversion efficiency of dye-sensitized solar cell (DSSC), rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+) is prepared and introduced into the TiO2 film in the DSSC. As a luminescence medium, Lu2O3:(Tm3+, Yb3+) improves incident light harvest via a conversion luminescence process and increases photocurrent; as a p-type dopant, the rare-earth ions elevate the energy level of the oxide film and increase the photovoltage. Under a simulated solar light irradiation of 100 mW cm−2, the light-to-electric energy conversion efficiency of the DSSC with Lu2O3:(Tm3+, Yb3+) doping reaches 6.63%, which is increased by 11.1% compared to the DSSC without Lu2O3:(Tm3+, Yb3+) doping.  相似文献   
3.
Herein, nanocrystals of Er3+ and Er3+, Yb3+ co-doped NaYF4 upconversion (UC) phosphor were prepared via the reverse-microemulsion method. The impact of different concentrations of Er3+ ions on the UC emission intensity after 980?nm diode laser excitation is discussed. The structure, morphology and composition of the nanophosphors were confirmed by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and the results showed the presence of NaYF4 nanocrystals with hexagonal phases of NaYF4. The UC spectra revealed two emission bands including a green and a red emission band and the CIE coordinate for the samples were estimated. The present research revealed that the reverse-microemulsion approach will be suitable for the synthesis of efficient upconversion nanophosphors.  相似文献   
4.
Lanthanide orthophosphate ceramics with monazite structure gained broad interest for several industrial applications. The crystallization processes, compressibility and sinterability of monazite-type lanthanum orthophosphate powder hydrothermally synthesized at 200 °C as well as mechanical properties of the sintered compacts were investigated. Based on a combination of thermo- and surface area analyses, X-ray diffraction as well as scanning electron microscopy studies it was found that the crystallization process occurs at ∼500 °C and the final crystallization of LaPO4 monoclinic phase takes place at 1400 °C. The sintered pellets are characterized by a density of 98% of theoretical density, a Vickers hardness of 5.7 ± 0.1 GPa and fracture toughness of 1.4 ± 0.1 MPa m0.5.  相似文献   
5.
《Ceramics International》2023,49(20):33099-33110
In this study, spinel Ni0.5Zn0.5Fe2O4 doped with transition metal ions as well as rare-earth ions Ni0.4Zn0.4M′0.2Fe2O4 (M′ = Cu, Dy, Gd and Lu) and M″0.5Zn0.5Fe2O4 (M″ = Ni, Mn and Co) are developed using the sol-gel auto-combustion route, and the role of substitution on electromagnetic properties is investigated. The powder X-ray diffraction accompanied by Rietveld refinement signifies a single-phase spinel ferrite that belongs to Fd-3m space group for all the compositions. Rietveld refinement confirms that doped Cu2+, Dy3+, Gd3+ and Lu3+ ions are at random distribution between spinel tetrahedral and spinel octahedral sites against their preferential occupancy. The saturation magnetisation (MS) of Ni0.5Zn0.5Fe2O4 (MS = 50.5 emu/g) increased with partial doping showing MS = 60.08 emu/g for transition-metal doped Ni0.4Zn0.4Cu0.2Fe2O4 and MS = 109.7 emu/g for rare-earth doped Ni0.4Zn0.4Dy0.2Fe2O4, which was the highest among all the doped compositions. Doping enhances the dielectric permittivity of Ni0.5Zn0.5Fe2O4 from 4.2 to 6.5 for Ni0.4Zn0.4Cu0.2Fe2O4 and 7.7 for Ni0.4Zn0.4Dy0.2Fe2O4. Further, the reflection coefficient (RL) of all the doped compositions of Ni0.4Zn0.4M′0.2Fe2O4 (M′ = Cu, Dy, Gd and Lu) was less than −8 dB (85% absorption) throughout the frequency band of 8–12 GHz with an optimum material thickness of 3.5 mm. Transition metal ion doped Ni0.4Zn0.4Cu0.2Fe2O4 resulted in further improvement of its absorption characteristics of the incident EM waves with reflection coefficient (RL) less than −10 dB (between 84.15% and 90%) between 10 and 12 GHz at a material thickness of 3.5 mm in the X-band frequency range.  相似文献   
6.
《Ceramics International》2023,49(16):26397-26410
Inspired by the high entropy effects of high-entropy components, a novel high-entropy rare-earth zirconate (La1/5Gd1/5Y1/5Sm1/5Yb1/5)2Zr2O7 (HEC-LZ) was designed and successfully synthesized in this work. In addition, two binary rare-earth doped zirconates (RE-LZ), (La1/3Sm1/3Yb1/3)2Zr2O7 (LSYZ) and (La1/3Gd1/3Y1/3)2Zr2O7 (LGYZ), were proposed using the same rare-earth elements for comparison. The thermal barrier coatings with LZ-based ceramic top layer were prepared by spray granulation, solid-phase synthesis and atmospheric plasma spraying techniques. The as-synthesized LZ-based ceramics are all dominated by the pyrochlore phase. Under 1000 °C, the thermal cycling performances of the three coatings were studied. The microstructure evolution and crack expansion during the failure process were investigated in detail. The strengthening mechanism and the cause of coating spallation are proposed in combination with mechanical properties and thermal matching analysis. The results showed that compared with the undoped LZ coating, the thermal shock life of LGYZ coating, LSYZ coating and HEC-LZ coating is improved by nearly 46%, 27% and 57%, respectively. Due to the characteristics of high randomness, HEC-LZ ceramic has a large lattice distortion than RE-LZ ceramics, resulting in a higher coefficient of thermal expansion and fracture toughness, which contributes to maintaining the structure stability of coatings under thermal stress.  相似文献   
7.
Wetting of thermal barrier coatings (TBCs) with calcium-magnesium- alumino-silicate (CMAS) leads to sintering and phase transition, which are major issues in the aerospace industry. We prepared Sr(Zr1−2xYbxGdx)O3−x (x = 0, 0.05, 0.1, and 0.15) coatings using solution precursor plasma spraying with inter-pass boundaries (IPBs) and vertical cracks, and analyzed the CMAS wettability at 1350 °C using the sessile-drop method. The wetting and diffusion dynamics of the CMAS melt on the surface of the coating were studied using a CCD camera, revealing that the Sr(Zr0.7Yb0.15Gd0.15)O2.85 coating had the lowest spreading speed (2.60 × 10−4 mm/s, spreading balance process). Furthermore, a greater extent of crack bending and smaller crack diameter can prevent the coatings from penetration of the CMAS melt.  相似文献   
8.
综述了长余辉发光材料的国内外研究进展,并以稀土离子激活的铝酸盐体系为例,从发光机理、合成方法和研究现状等方面进行了全面的分析。特别对飞秒激光诱导下的长余辉发光玻璃的研究情况进行了详细介绍,对发展前景和研究方向进行了展望。  相似文献   
9.
聚乙烯转光棚膜的加工及应用研究   总被引:8,自引:3,他引:8  
本文对聚乙烯转光棚膜的加工和光转换剂的作用、配比关系及物理性能进行了讨论。  相似文献   
10.
ABSTRACT

Inorganic particulates are usually dried in a fixed bed, fluidized bed, or spray dryers. These compounds are easy to dry, once their physical structure, with high porosity, allows moisture content removal with low resistances. For fluidized bed of alumina particle evaluations, a laboratory-scale drying unit was built. The drying experiments were carried out with alumina particles with different diameters to evaluate temperature and air flow rate effects on drying kinetics and bed height. In another case, the dehydration of a mixture of rare-earth chlorides in a fluidized bed was studied, aiming at the production of anhydrous rare-earth chlorides, used to obtain mischmetal by electrolytic and metallothermic processes. The spray drying experiments were carried out in a pilot plant. Spray drying is a technique largely applied in industrial processes to dry solutions or suspensions, converting their solid parts into a dried powder. A set of rare-earth drying experiments was carried out, aiming at the development of techniques to obtain a powder that could satisfy international morphological requirements. The results allowed evaluating the effects of air flow rate, feed concentration, atomizer model, rotation velocity, and atomization pressure on powder density and particle size distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号