首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29153篇
  免费   1576篇
  国内免费   1322篇
电工技术   748篇
综合类   1324篇
化学工业   5348篇
金属工艺   4133篇
机械仪表   2710篇
建筑科学   1969篇
矿业工程   272篇
能源动力   2784篇
轻工业   851篇
水利工程   97篇
石油天然气   752篇
武器工业   239篇
无线电   1200篇
一般工业技术   7144篇
冶金工业   1069篇
原子能技术   450篇
自动化技术   961篇
  2024年   52篇
  2023年   532篇
  2022年   726篇
  2021年   820篇
  2020年   927篇
  2019年   854篇
  2018年   810篇
  2017年   966篇
  2016年   1027篇
  2015年   1157篇
  2014年   1591篇
  2013年   2059篇
  2012年   1477篇
  2011年   2289篇
  2010年   1595篇
  2009年   1724篇
  2008年   1628篇
  2007年   1577篇
  2006年   1336篇
  2005年   1223篇
  2004年   1095篇
  2003年   897篇
  2002年   744篇
  2001年   606篇
  2000年   615篇
  1999年   567篇
  1998年   506篇
  1997年   477篇
  1996年   430篇
  1995年   322篇
  1994年   264篇
  1993年   207篇
  1992年   173篇
  1991年   143篇
  1990年   131篇
  1989年   108篇
  1988年   91篇
  1987年   45篇
  1986年   32篇
  1985年   52篇
  1984年   48篇
  1983年   45篇
  1982年   51篇
  1981年   14篇
  1980年   11篇
  1974年   2篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Clay polyurethane nanocomposite (CPN) coating films were fabricated by uniformly dispersing nanoclay, organically modified with 25–30 wt.% octadecylamine in varying concentrations up to 5 wt.%, in a commercial two component, glossy, acrylic aliphatic polyurethane using ultrasonication. Organo-modified nanoclay was characterized by X-ray diffraction (XRD). The dispersion of the nanoclay into the matrix was investigated by scanning electron microscopy (SEM). CPN coating films were characterized by thermogravimetric analysis (TGA), and flame retardant, corrosion resistance and mechanical properties were also investigated. The XRD measurement indicated that, the organo-modified nanoclay particles were mainly constituted of montmorillonite with traces of quartz and calcite also found to be present. The SEM analysis showed that the nanoclay layers were dispersed and intercalated into the polyurethane coating. Thermogravimetric analysis showed that incorporating 5 wt.% organo-nanoclay into polyurethane considerably enhanced the thermal stability and increased the char residue to 14.11 wt.% relative to 4.58 for the sample without organo-nanoclay (blank polyurethane). The limiting oxygen index (LOI) test revealed that incorporation of organo-nanoclay led to a further increase in LOI values, which indicate an improvement in flame retardancy properties. The corrosion resistance also improved and this improvement increases with increase nanoclay wt.%. The mechanical resistance measurements demonstrated that the gloss of the CPN coating films slightly decreased, although hardness, adhesion and impact resistance of the CPN coating films improved with the incorporation of the organo-nanoclay.  相似文献   
42.
Self-healing is a smart and promising way to make materials more reliable and longer lasting. In the case of structural or functional composites based on a polymer matrix, very often mechanical damage in the polymer matrix or debonding at the matrix–filler interface is responsible for the decrease in intended properties. This review describes the healing behavior in structural and functional polymer composites with a so-called intrinsically self-healing polymer as the continuous matrix. A clear similarity in the healing of structural and functional properties is demonstrated which can ultimately lead to the design of polymer composites that autonomously restore multiple properties using the same self-healing mechanism.  相似文献   
43.
Thermal bending analysis of doubly curved laminated shell panels with general boundary conditions and laminations is presented. The equations of equilibrium are derived in the form of two coupled sets of ordinary differential equations based on a general shell theory and solved through the state-space approach in a repeated manner. It is depicted that the results of the present method are in great agreement with analytical solutions. Cylindrical shell panels with general boundary conditions and laminations, where no analytical solution is available, are solved. It is found that the present method exhibits a high convergence rate as well as presenting accurate results in all cases.  相似文献   
44.
This paper summarizes the basics of pulsed thermal nondestructive testing (TNDT) including theoretical solutions, data processing algorithms and practical implementation. Typical defects are discussed along with 1D analytical and multi-dimensional numerical solutions. Special emphasis is focused on defect characterization by the use of inverse solutions. A list of TNDT terms is provided. Applications of active TNDT, mainly in the aerospace industry, are discussed briefly, and some trends in the further development of this technique are described.  相似文献   
45.
Thermal sprayed ceramic coatings have extensively been used in components to protect them against friction and wear. However, the poor lubricating ability severely limits their application. Herein, yttria-stabilized zirconia (YSZ)/MoS2 composite coatings were successfully fabricated on steel substrate with the combination of thermal spraying technology and hydrothermal reaction. Results show that the synthetic MoS2 powders are composed of numbers of ultra-thin sheets (about 7 ~ 8?nm), and the sheet has obvious lamellar structure. After vacuum impregnation and hydrothermal reaction, numbers of MoS2 powders, look like flowers, generate inside the plasma sprayed YSZ coating. Moreover, the growing point of the MoS2 flower is the intrinsic micro-pores of YSZ coating. The friction and wear tests under high vacuum environment indicate that the composite coating has an extremely long lifetime (>?100,000 cycles) and possesses a low friction coefficient less than 0.1, which is lower by about 0.15 times than that of YSZ coating. Meanwhile, the composite shows an extremely low wear rate (2.30?×?10?7 mm3 N?1 m?1) and causes slight wear damage to the counterpart. The excellent lubricant and wear-resistant ability are attributed to the formation of MoS2 transfer films and the ultra-smooth of the worn surfaces of hybrid coatings.  相似文献   
46.
The rapid expansion of the photovoltaic (PV) module market in the last years will determine in the near future a remarkable growth of corresponding waste. Then, the hazardous materials contained in the modules, such as Cd, Pb and Cr, could be released in the environment if the waste panels will not be handled adequately. Recycling processes of silicon crystalline panels, finalized to separate PV cells from the glass, involve the removal of the EVA (Ethylene Vinyl Acetate) layer through different methods, as the thermal treatment. During this treatment, some hazardous components can be released due to thermal degradation process. In this paper the metals released in the gas emissions and in the ashes due to the thermal treatment of modules were evaluated. For this purpose, three samples of crystalline panels were heated in furnace up to 600 °C and the complete degradation of the EVA was obtained. A mass balance between the sample and its components, before and after treatment, was performed in order to assess the weight loss percentage. Finally, after thermal treatment a qualitative analysis on the separated PV cell surface was performed by SEM-EDS (Scanning Electron Microscope equipped with Energy Dispersive Spectrometer).  相似文献   
47.
A new constitutive equation of thermoelasticity for crystals is presented based on the interatomic potential and solid mechanics at finite temperature. Using the new constitutive equation, the calculations for crystal copper and graphene are carried out under different loading paths at different temperatures. The calculated results are in good agreement with those of the previous thermoelasticity constitutive equation based on quantum mechanics, which clearly indicates that our new constitutive equation of thermoelasticity is correct. A lot of comparisons also show that the present theory is more concise and efficient than the previous thermal stress theory in the practical application.  相似文献   
48.
This paper deals with the investigation of the effect of hygrothermal conditions on the bending of nanoplates using Levy type solution model employing the state-space concept. The nanoplates are assumed to be subjected to a hygrothermal environment. The two-unknown function plate theory is used to derive the governing differential equations on the basis of Eringen's nonlocal elasticity theory. The governing equations contain the small scale effect as well as hygrothermal and mechanical effects. These equations are converted into a set of first-order linear ordinary differential equations with constant coefficients. Analytical solution of bending response for nanoplates under combinations of simply supported, clamped and free boundary conditions is obtained. Comparison of the results with those being in the open literature is made. The influences played by small scale parameter, temperature rise, the degree of moisture concentration, boundary conditions, plate aspect ratio and side-to-thickness ratio are studied.  相似文献   
49.
Behavior of Magnesium‐Alloys for Automotive Applications under Mechanical and Environmental Loading: Influence of Passivating Films and Mechanisms of Local Breakdown To assure an efficient design of components under cyclic loading, all available data concerning fatigue have to be observed. Therefore the influences of manufacturing on the material condition, the mechanical loads and environmental effects have to be analysed. Magnesium‐alloys are of special interest for lightweight applications because of their excellent strength‐density ratio. The corrosion resistance of magnesium‐alloys depends on the same factors that are critical to other metals. The alloys have a good stability to atmospheric exposure and a good resistance to attack by alkali, chromic and hydrofluoric acids. However, because of the electrochemical activity of magnesium, the relative importance of some factors is greatly amplified. The nature and composition of passive films formed on magnesium‐alloys depend on the prevailing conditions, viz. alloy‐composition, passivation potential, pH, electrolyte composition and temperature. Passive films may be damaged by local breakdown. Because of this, magnesium‐alloys suffer a degradation of their properties when exposed to an aqueous environment. The main topic of the present investigations is the verification of mechanisms of the local breakdown of the protecting film. At least two mechanisms are possible for this localization: mechanical breakdown by slip steps and electrochemical breakdown (for e.g. by the effects of chloride ions). Corrosion and passivation of different high purity alloys have been studied in different solutions (neutral, alkaline with specific anions and cations) using electrochemical techniques. The diecasted alloys were tested as produced and machined. The results clarified that depending on alloy/material and surface condition/corrosion environment different mechanisms for electrochemical breakdown of the protecting films are possible. Hence fatigue life under environmental loading is influenced by surface and testing conditions.  相似文献   
50.
Thermal barrier coatings (TBC) are widely used to prevent transient high temperature attack and allow components high durability. Due to strong inhomogeneous material properties the TBC failure often initiates near the interface between the brittle oxide layer and the ductile substrate. A reliable prediction of the TBC failure requires detailed information about the crack tip field and the consequent fracture criteria. In the present paper both cohesive model and gradient plasticity are used to simulate the failure process and to study interdependence of the interface stress distribution with the specific fracture energies. Computations confirm that combination of the two models is able to simulate different failure mechanisms in the TBC system. The computational model has the potential to give a realistic prediction of the crack propagation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号