首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18707篇
  免费   2218篇
  国内免费   782篇
电工技术   2079篇
技术理论   1篇
综合类   1277篇
化学工业   1364篇
金属工艺   2173篇
机械仪表   2113篇
建筑科学   986篇
矿业工程   776篇
能源动力   330篇
轻工业   2403篇
水利工程   275篇
石油天然气   406篇
武器工业   180篇
无线电   1789篇
一般工业技术   2425篇
冶金工业   1439篇
原子能技术   78篇
自动化技术   1613篇
  2024年   128篇
  2023年   410篇
  2022年   494篇
  2021年   614篇
  2020年   696篇
  2019年   607篇
  2018年   607篇
  2017年   697篇
  2016年   703篇
  2015年   725篇
  2014年   1164篇
  2013年   1058篇
  2012年   1299篇
  2011年   1363篇
  2010年   1009篇
  2009年   1062篇
  2008年   883篇
  2007年   1131篇
  2006年   1042篇
  2005年   939篇
  2004年   713篇
  2003年   710篇
  2002年   570篇
  2001年   576篇
  2000年   460篇
  1999年   414篇
  1998年   303篇
  1997年   294篇
  1996年   236篇
  1995年   188篇
  1994年   153篇
  1993年   82篇
  1992年   93篇
  1991年   65篇
  1990年   37篇
  1989年   42篇
  1988年   29篇
  1987年   15篇
  1986年   16篇
  1985年   13篇
  1984年   18篇
  1983年   8篇
  1982年   7篇
  1981年   8篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
介绍了一种基于“物联网传感器”技术,具有强大信息传输功能的智能管道巡检机器人。该型智能管道巡检机器人主要运用于建筑领域,为施工过程中的“管道布设”、“基坑监测”及“重点管线巡查”提供硬件支持。该型机器人集“智能数据采集”、“智能数据分析”、“智能管内巡检”等功能于一身,能够满足全天候值守巡检的要求。同时,应用 “总线设计”及“模块化设计”的思路,使该型检测设备能够与各种类型的专用传感系统进行结合,方便检测人员根据现场的实际需求,随时组装出具有相应功能的管道巡检机器人。  相似文献   
102.
大量研究和实发事件表明,柔性直流输电技术的应用会在系统中引入潜在的振荡风险。以往对于柔直振荡的研究往往集中于交流侧,而对于直流电网侧的振荡问题研究较少。该文针对柔直换流器与直流电网之间的振荡问题展开研究,首先通过电磁暂态仿真分析复现出柔直系统中高频振荡现象,其次建立系统直流阻抗网络模型,然后采用对数导数法定量分析系统振荡模式,最后分析了振荡的影响因素,总结了多端柔直电网中高频振荡特性。  相似文献   
103.
Passive radiative cooling technology can cool down an object by reflecting solar light and radiating heat simultaneously. However, photonic radiators generally require stringent and nanoscale‐precision fabrication, which greatly restricts mass production and renders them less attractive for large‐area applications. A simple, inexpensive, and scalable electrospinning method is demonstrated for fabricating a high‐performance flexible hybrid membrane radiator (FHMR) that consists of polyvinylidene fluoride/tetraethyl orthosilicate fibers with numerous nanopores inside and SiO2 microspheres randomly distributed across its surface. Even without silver back‐coating, a 300 µm thick FHMR has an average infrared emissivity >0.96 and reflects ≈97% of solar irradiance. Moreover, it exhibits great flexibility and superior strength. The daytime cooling performance this device is experimentally demonstrated with an average radiative cooling power of 61 W m?2 and a temperature decrease up to 6 °C under a peak solar intensity of 1000 W m?2. This performance is comparable to those of state‐of‐the‐art devices.  相似文献   
104.
Humans live today in a high‐tech and informationalized society. With the development of the emerging electronic information age, various electronic systems are inclined to be multifunctional and miniaturized. It is urgent to develop “small and powerful” micro‐batteries with flexibility and high electrochemical performance to meet the diverse needs of microelectronic components. However, low electrochemical performance exists in traditional microenergy storage devices, which fail to satisfy the energy needs for microdevices. Here, for the first time, a planar integrated flexible rechargeable dual‐ion microbattery (DIMB) is reported, which is fabricated from an interdigital pattern of graphite as an electrode and lithium hexafluorophosphate as an electrolyte. As a microbattery, the DIMB exhibits a high reversible capacity of 56.50 mAh cm?3, and excellent cycle stability with 90% capacity retention after 300 cycles under a high working voltage. The application of DIMB in microdevices, such as light‐emitting diodes (LEDs), digital electronic game consoles, and electrochromic glasses is also investigated, fully demonstrating its “small and powerful” performance. The integrated DIMB is a high‐voltage microdevice that reaches a nonpareil discharge voltage of about 100 V and a charging capacity of 102 mAh g?1. This dual ion‐based flexible microbattery could become a promising candidate for energy storage and conversion components in next‐generation microelectronic devices and integrated electronic devices.  相似文献   
105.
Flexible and stretchable organic solar cells (OSCs) have attracted enormous attention due to their potential applications in wearable and portable devices. To achieve flexibility and stretchability, many efforts have been made with regard to mechanically robust electrodes, interface layers, and photoactive semiconductors. This has greatly improved the performance of the devices. State‐of‐the‐art flexible and stretchable OSCs have achieved a power conversion efficiency of 15.21% (16.55% for tandem flexible devices) and 13%, respectively. Here, the recent progress of flexible and stretchable OSCs in terms of their components and processing methods are summarized and discussed. The future challenges and perspectives for flexible and stretchable OSCs are also presented.  相似文献   
106.
107.
As is frequently seen in sci‐fi movies, future electronics are expected to ultimately be in the form of wearable electronics. To realize wearable electronics, the electric components should be soft, flexible, and even stretchable to be human‐friendly. An important step is presented toward realization of wearable electronics by developing a hierarchical multiscale hybrid nanocomposite for highly flexible, stretchable, or transparent conductors. The hybrid nanocomposite combines the enhanced mechanical compliance, electrical conductivity, and optical transparency of small CNTs (d ≈ 1.2 nm) and the enhanced electrical conductivity of relatively bigger Ag nanowire (d ≈ 150 nm) backbone to provide efficient multiscale electron transport path with Ag nanowire current backbone collector and local CNT percolation network. The highly elastic hybrid nanocomposite conductors and highly transparent flexible conductors can be mounted on any non‐planar or soft surfaces to realize human‐friendly electronics interface for future wearable electronics.  相似文献   
108.
Conductive hydrogels are attracting tremendous interest in the field of flexible and wearable soft strain sensors because of their great potential in electronic skins, and personalized healthcare monitoring. However, conventional conductive hydrogels using pure water as the dispersion medium will inevitably freeze at subzero temperatures, resulting in the diminishment of their conductivity and mechanical properties; meanwhile, even at room temperature, such hydrogels suffer from the inevitable loss of water due to evaporation, which leads to a poor shelf‐life. Herein, an antifreezing, self‐healing, and conductive MXene nanocomposite organohydrogel (MNOH) is developed by immersing MXene nanocomposite hydrogel (MNH) in ethylene glycol (EG) solution to replace a portion of the water molecules. The MNH is prepared from the incorporation of the conductive MXene nanosheet networks into hydrogel polymer networks. The as‐prepared MNOH exhibits an outstanding antifreezing property (?40 °C), long‐lasting moisture retention (8 d), excellent self‐healing capability, and superior mechanical properties. Furthermore, this MNOH can be assembled as a wearable strain sensor to detect human biologic activities with a relatively broad strain range (up to 350% strain) and a high gauge factor of 44.85 under extremely low temperatures. This work paves the way for potential applications in electronic skins, human?machine interactions, and personalized healthcare monitoring.  相似文献   
109.
唐虹  李明  杨阳 《现代电子技术》2011,34(1):160-163
结合我国汽车行业的生产现状,研究、讨论了一种计算机自动识别汽车线柬图纸的方法。该方法通过计算机软件仿真试验,在符合某一预先设定好的识图规则的情况下,根据编制好的程序对图纸中线束进行判断,筛选出需要的线束和线束段,将其按类合并,最终达到自动完成线束长度和线束分类识别的目的。这种新的识别方法较传统的人工读图,分段计算,相加求和的方法有了很大的创新,极大地提高了我国汽车行业的生产效率,减少了人员操作的错误率,为企业生产带来直接利益。  相似文献   
110.
刘喜明 《应用激光》2006,26(6):381-384
采用Ni基自熔合金+块状WC混合粉末进行送粉激光熔覆并获得熔覆层,对熔覆层在不同温度下加热后空冷至室温,观察相应熔覆层的显微组织变化,结果表明:Ni基自熔合金+WC送粉激光熔覆层不适合在500℃~900℃再加热处理,再此温度区间对熔覆层再加热会导致块状WC出现裂纹。Ni基自熔合金基体的显微组织在700℃以上开始不稳定,发生形态和显微组织结构的变化。熔覆层中的块状WC加热至900℃以上时裂纹会被自行焊合,温度继续升高,块状WC会发生离散,分化成细小的WC颗粒,产生这种现象的根本原因是块状WC具有先天的超细纤维、颗粒混合结构。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号