首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136944篇
  免费   13614篇
  国内免费   9097篇
电工技术   10062篇
技术理论   3篇
综合类   10988篇
化学工业   30008篇
金属工艺   9446篇
机械仪表   9904篇
建筑科学   4626篇
矿业工程   2063篇
能源动力   4020篇
轻工业   7451篇
水利工程   849篇
石油天然气   4813篇
武器工业   1304篇
无线电   15295篇
一般工业技术   19834篇
冶金工业   3169篇
原子能技术   1467篇
自动化技术   24353篇
  2024年   383篇
  2023年   1814篇
  2022年   2679篇
  2021年   4017篇
  2020年   3586篇
  2019年   3670篇
  2018年   3553篇
  2017年   4494篇
  2016年   4936篇
  2015年   5486篇
  2014年   6989篇
  2013年   8208篇
  2012年   8430篇
  2011年   9606篇
  2010年   7930篇
  2009年   8995篇
  2008年   8425篇
  2007年   9426篇
  2006年   8859篇
  2005年   7397篇
  2004年   6458篇
  2003年   6023篇
  2002年   4937篇
  2001年   4037篇
  2000年   3543篇
  1999年   2827篇
  1998年   2156篇
  1997年   1708篇
  1996年   1572篇
  1995年   1512篇
  1994年   1296篇
  1993年   1088篇
  1992年   875篇
  1991年   594篇
  1990年   471篇
  1989年   406篇
  1988年   264篇
  1987年   163篇
  1986年   142篇
  1985年   118篇
  1984年   98篇
  1983年   77篇
  1982年   67篇
  1981年   72篇
  1980年   35篇
  1979年   30篇
  1978年   31篇
  1977年   27篇
  1976年   33篇
  1951年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   
102.
The eutectic 80Au/20Sn solder alloy is widely used in high power electronics and optoelectronics packaging. In this study, low cycle fatigue behavior of a eutectic 80Au/20Sn solder alloy is reported. The 80Au/20Sn solder shows a quasi-static fracture characteristic at high strain rates, and then gradually transforms from a transgranular fracture (dominated by fatigue damage) to intergranular fracture (dominated by creep damage) at low strain rates with increasing temperature. Coffin-Manson and Morrow models are proposed to evaluate the low cycle fatigue behavior of the 80Au/20Sn solder. Besides, the 80Au/20Sn solder has enhanced fatigue resistance compared to the 63Sn/37Pb solder.  相似文献   
103.
The main aim of this work is dual computer analysis of probabilistic coefficients for the homogenized tensor of the polymer filled with the rubber particles having randomized Poisson ratios of both constituents. The major issue is to verify an influence of a randomness in rubber Poisson ratio close to the compressibility limit on the uncertainty of the effective tensor probabilistic characteristics. Probabilistic analysis presented here is carried out using mainly the stochastic perturbation technique provided by the common application of the traditional FEM commercial code ABAQUS and the symbolic computations package MAPLE. This FEM-based technique employs polynomial response function of the optimum order recovered from the weighted least squares method and following a set of deterministic solutions obtained for various values of the randomized input parameter. Optimization procedure is released entirely into a symbolic environment, where maximization of the correlation factor together with minimization of the fitting variance and approximation error are applied. Homogenization technique consists in equating of deformation energies for the real composite and the artificial one characterized by the effective elasticity tensor with uncertainty.  相似文献   
104.
105.
The microstructure and the oxidation resistance in air of continuous carbon fibre reinforced ZrB2–SiC ceramic composites were investigated. SiC content was varied between 5–20?vol.%, while maintaining fibre content at ~40?vol.%. Short term oxidation tests in air were carried out at 1500 and 1650?°C in a bottom-up loading furnace. The thickness, composition and microstructure of the resulting oxide scale were analysed by SEM-EDS and X-Ray diffraction. The results show that contents above 15?vol.% SiC ensure the formation of a homogeneous protective borosilicate glass that covers the entire sample and minimizes fibre burnout. The scale thickness is ~90?μm for the sample containing 5?vol.% SiC and decreases with increasing SiC content.  相似文献   
106.
107.
This paper proposes the application of Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in fixed structure H loop shaping controller design. Integral Time Absolute Error (ITAE) performance requirement is incorporated as a constraint with an objective of maximization of stability margin in the fixed structure H loop shaping controller design problem. Pneumatic servo system, separating tower process and F18 fighter aircraft system are considered as test systems. The CMA-ES designed fixed structure H loop-shaping controller is compared with the traditional H loop shaping controller, non-smooth optimization and Heuristic Kalman Algorithm (HKA) based fixed structure H loop shaping controllers in terms of stability margin. 20% perturbation in the nominal plant is used to validate the robustness of the CMA-ES designed H loop shaping controller. The effect of Finite Word Length (FWL) is considered to show the implementation difficulties of controller in digital processors. Simulation results demonstrated that CMA-ES based fixed structure H loop shaping controller is suitable for real time implementation with good robust stability and performance.  相似文献   
108.
This study addresses the thermo‐diffusion and the diffusion‐thermo phenomena in a semi‐infinite absorbent channel whose walls are contracting/expanding, with heat source/sink effects. The governing partial differential equations with suitable boundary conditions are transformed to a system of dimensionless ordinary differential equations. An analytic solution of the problem has been found using a technique called homotopy analysis method (HAM). HAM gives consistently valid answers to the problem over an extensive variety of parameters and also provides better accuracy. To validate the analytical results, a comparison has been presented with a numerical solution calculated by using the parallel shooting method. The effects of dimensionless parameters, that is, deformation parameter, Reynolds number, Soret and Dufour numbers, and heat source/sink parameter on the expressions of velocity, temperature, and concentration profiles are analyzed graphically to understand the physics of the deformable channel. It has been noted that the velocity across the channel is higher for the expanding channel, as compared to that for the contracting channel. Also the Soret and Dufour number increases the temperature of the fluid, and decreases the concentration. The temperature profile has an increasing behavior in the case of heat source, and a decreasing behavior in the case of heat sink.  相似文献   
109.
The extracellular matrix (ECM) is a macromolecular network that can provide biochemical and structural support for cell adhesion and formation. It regulates cell behavior by influencing biochemical and physical cues. It is a dynamic structure whose components are modified, degraded, or deposited during connective tissue development, giving tissues strength and structural integrity. The physical properties of the natural ECM environment control the design of naturally or synthetically derived biomaterials to guide cell function in tissue engineering. Tissue engineering is an important field that explores physical cues of the ECM to produce new viable tissue for medical applications, such as in organ transplant and organ recovery. Understanding how the ECM exerts physical effects on cell behavior, when cells are seeded in synthetic ECM scaffolds, is of utmost importance. Herein we review recent findings in this area that report on cell behaviors in a variety of ECMs with different physical properties, i.e., topology, geometry, dimensionality, stiffness, and tension.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号