首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   5篇
  国内免费   1篇
综合类   2篇
化学工业   6篇
金属工艺   10篇
机械仪表   1篇
能源动力   1篇
无线电   3篇
一般工业技术   3篇
冶金工业   7篇
自动化技术   1篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有34条查询结果,搜索用时 0 毫秒
11.
Researches on environmentally friendly semiconductor photocatalysts for efficient photocatalytic hydrogen evolution have important practical significance. Here, using first-principles calculations, the CeO2(111)/hBN heterojunction was conceived. The influence of the interface effect on the structural, electronic and optical properties of the heterojunction was investigated in detail. The band gap of the heterojunction is smaller than the two individual components and forms a type-II heterojunction, improving the photocatalytic activity. Furthermore, by doping two C atoms, the band gap of heterojunction was further narrowed. Both the oxidation and reduction potential of CeO2(111)/hBN heterojunction meet the requirements of water splitting and has certain advantages over other photocatalysts in the ability for photocatalytic hydrogen evolution. The study revealed the possible mechanism of CeO2(111) and hBN monolayers compositing to facilitate photocatalysis and hydrogen evolution ability, which may provide a possible reference direction for the practical design of more high-quality semiconductor photocatalysts.  相似文献   
12.
This research aimed to study the influence of different amounts of hBN additive on the mechanical properties and microstructure of TiB2-15 vol% SiC samples. All ceramics, containing 0, 3.5, and 7 vol% hBN, were sintered at 2000 °C using a hot-pressing route and reached their near full densities. Thanks to two different chemical reactions among the SiC reinforcement and the TiB2 surface oxides (B2O3 and TiO2), the in-situ phases of SiO2 and TiC were generated over the sintering process. The intergranular mode was identified as the predominant fracture type in all three composite samples. The hBN additive could contribute to grain refining of composites so that the sample containing 7 vol% hBN reached the finest microstructure. Finally, the highest Vickers hardness of 25.4 HV0.5 kg and flexural strength of 776 MPa were attained for the TiB2–SiC and TiB2–SiC-7 vol% hBN samples, respectively.  相似文献   
13.
在Al2O3陶瓷中掺杂六方氮化硼(hBN)达到了系统自润滑的效果,同时以hBN作为弱界面层引入自润滑复合陶瓷基体,设计了Al2O3-hBN层状结构,对该层状复合材料的显微结构及相组成进行研究表明,当基体中hBN含量为10%,烧成温度为1650℃时,BN不会熔融而且可以均匀弥散在基体中。  相似文献   
14.
Enhancing the device performance of single crystal organic field effect transistors (OFETs) requires both optimized engineering of efficient injection of the carriers through the contact and improvement of the dielectric interface for reduction of traps and scattering centers. Since the accumulation and flow of charge carriers in operating organic FETs takes place in the first few layers of the semiconductor next to the dielectric, the mobility can be easily degraded by surface roughness, charge traps, and foreign molecules at the interface. Here, a novel structure for high‐performance rubrene OFETs is demonstrated that uses graphene and hexagonal boron nitride (hBN) as the contacting electrodes and gate dielectric layer, respectively. These hetero‐stacked OFETs are fabricated by lithography‐free dry‐transfer method that allows the transfer of graphene and hBN on top of an organic single crystal, forming atomically sharp interfaces and efficient charge carrier‐injection electrodes without damage or contamination. The resulting heterostructured OFETs exhibit both high mobility and low operating gate voltage, opening up new strategy to make high‐performance OFETs and great potential for flexible electronics.  相似文献   
15.
采用粉末冶金技术制备Ni—Cr/hBN自润滑复合材料,研究hBN含量及摩擦栽荷对Ni—Cr/hBN复合材料的性能及摩擦磨损行为的影响.结果表明:随hBN含量增大,Ni—Cr/hBN复合材料的密度、抗弯强度和摩擦系数均逐渐减小.当载荷为20N时,Ni—Cr/hBN复合材料的磨损速率随hBN含量的增大而减小:当栽荷为60N和100N时,磨损速率随hBN含量增大呈先减小后增大的趋势.当hBN含量不变时。磨损速率随载荷增大而逐渐增大.通过探讨Ni—C汕BN自润滑复合材料的润滑与磨损机理可知。材料的摩擦系数取决于hBN的含量,而磨损速率与材料的力学性能有关.当hBN含量为9%(质量分数),摩擦载荷为60N时,Ni—Cr/hBN自润滑复合材料具有最佳的摩擦学综合性能.  相似文献   
16.
Ni3Al-hBN composite powders were manufactured by spray drying technology, and then plasma sprayed to form the coatings. The influence of hBN addition amount on the flowability and apparent density of the composite powders, as well as the mechanical and tribological properties of the as-sprayed coatings was evaluated. The results indicate that the spherical powders with uniformly distributed compositions are successfully manufactured by spray drying technology. Both the flowability and apparent density of the Ni3Al-hBN powders, as well as the bond strength and hardness of the composite coatings decrease with the increase of hBN content. Addition of hBN less than 10 wt.% reduces the friction coefficient and brittle fracture of the coatings, which is beneficial to improve the tribological properties of the Ni3Al-hBN composite coatings. However, high hBN addition, damaging the bond in the coating, will deteriorate the wear resistance of the coating. The Ni3Al-hBN composite coating containing 10%hBN shows the optimum properties combining strength and hardness with tribological properties.  相似文献   
17.
总结了电气电子领域使用的六方氮化硼(hexagonal boron nitride,h BN)导热填料制备方法,介绍了近几年h BN填充树脂基复合材料的研究进展,研究了导热树脂复合材料的导热机理和导热模型,讨论了h BN填料的形貌、粒度、颗粒复配及表面改性方法等因素对材料导热性能的影响,并对h BN填充高导热树脂复合材料的发展方向进行了展望。  相似文献   
18.
Hexagonal boron nitride (hBN), a two‐dimensional nanofiller with good mechanical properties, high thermal conductivity and excellent lubrication properties, has the potential to substantially reinforce polymers to form nanocomposites with advanced properties. In this study, we successfully prepared hBN nanosheets with a thickness of a few atoms by using amine‐capped aniline trimer (AT) as dispersant. Epoxy/hBN nanocomposites were prepared by curing reaction of epoxy E51, Jeffamine D230 and AT‐modified hBN nanosheets, where the hBN contents were 0.5, 1, 2 and 4 wt%. An increase in contact angle of the epoxy/hBN nanocomposites was evident in the presence of hBN nanosheets, implying an increase in the hydrophobic nature of the composites. The as‐prepared composites exhibited enhanced mechanical and tribological performance compared to pure epoxy resin. This effectiveness in improving the mechanical, friction and wear behavior of the epoxy composites could be attributed to the complementary action of excellent mechanical properties, lubrication and thermal conductivity of hBN nanofillers. © 2016 Society of Chemical Industry  相似文献   
19.
为了提高NiCr/Cr3C2复合涂层的摩擦性能,在涂层中加入了hBN作为固体润滑剂,研究了hBN含量对涂层抗热震性能和氧化性能的影响。采用大气等离子喷涂技术制备了hBN含量分别为0%、2.5%、5%、10%和20%的NiCr/Cr3C2-hBN复合涂层,并研究了复合涂层在700、800和850℃的抗热震性能和在850℃的恒温氧化性能。结果表明:NiCr/Cr3C2-hBN复合涂层呈层状结构,各层之间结合良好;所有涂层在700、800和850℃水淬10次均未出现明显的裂纹和脱落现象,涂层抗热震性能均良好。涂层的氧化增重随着hBN含量的增加逐渐增大,96h后NiCr/Cr3C2-20%hBN涂层氧化非常严重。在850℃时,所有涂层的氧化动力学曲线均遵循抛物线规律。  相似文献   
20.
《Ceramics International》2023,49(19):31802-31814
Hexagonal boron nitride (hBN) with excellent self-lubrication performance is expected to relieve the friction resistance and wear of NiCr–Cr3C2 coatings. However, the poor wettability of hBN with most materials makes it difficult to fabricate NiCr–Cr3C2-hBN composite coating with good cohesion strength. In this study, hBN was firstly pretreated through magnetron-sputtering aided Ni plating to form hBN@Ni particles. Then, NiCr–Cr3C2-hBN@Ni powder was prepared by spray granulation. Next, corresponding coatings were prepared through supersonic atmosphere plasma spraying. It was found that in comparison with NiCr–Cr3C2-hBN coating, the NiCr–Cr3C2-hBN@Ni coating exhibited a decreased porosity (from 3.6% to 0.3%), elevated cohesion (from 52.78 N to 62.11 N), and the wear rate decreased by an order of magnitude. It was concluded that hBN@Ni can effectively improve the component interface inside powder, enhance the cohesion of molten in-flight particles, and make the internal structure of the coating denser.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号