首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50942篇
  免费   5756篇
  国内免费   3583篇
电工技术   3848篇
技术理论   9篇
综合类   3514篇
化学工业   8569篇
金属工艺   3451篇
机械仪表   2516篇
建筑科学   3296篇
矿业工程   1361篇
能源动力   1592篇
轻工业   1762篇
水利工程   475篇
石油天然气   543篇
武器工业   638篇
无线电   6190篇
一般工业技术   14375篇
冶金工业   2296篇
原子能技术   361篇
自动化技术   5485篇
  2024年   308篇
  2023年   1227篇
  2022年   1587篇
  2021年   2182篇
  2020年   2386篇
  2019年   1787篇
  2018年   1625篇
  2017年   1805篇
  2016年   1771篇
  2015年   1850篇
  2014年   3047篇
  2013年   2944篇
  2012年   3562篇
  2011年   4152篇
  2010年   3016篇
  2009年   3081篇
  2008年   2907篇
  2007年   3418篇
  2006年   2882篇
  2005年   2739篇
  2004年   2192篇
  2003年   1951篇
  2002年   1592篇
  2001年   1259篇
  2000年   1071篇
  1999年   761篇
  1998年   647篇
  1997年   477篇
  1996年   372篇
  1995年   305篇
  1994年   295篇
  1993年   224篇
  1992年   163篇
  1991年   163篇
  1990年   141篇
  1989年   109篇
  1988年   51篇
  1987年   37篇
  1986年   34篇
  1985年   25篇
  1984年   36篇
  1983年   19篇
  1982年   29篇
  1981年   9篇
  1980年   14篇
  1979年   3篇
  1976年   3篇
  1963年   2篇
  1955年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.
Synergistic properties in hybrid materials can emerge if the inorganic matrix has an electronic influence on the organic constituents and vice versa. This paper describes the drastic effect of SiO2 in periodically ordered mesoporous organosilica materials (PMOs) on ethylene groups. A sophisticated, in situ solid‐state NMR spectroscopy study showed that the ozonolysis of ethylene groups follows an entirely different mechanism than is normal for organic, molecular groups. Ultimately, this leads to the topotactic transformation of the PMO material. Only if silicon is not in the alpha position to the double bond does it became possible to establish a new method to functionalize PMOs materials: the targeted scission of the ethylene group and the creation of functionalized pockets inside the pore walls of the mesoporous solid.  相似文献   
992.
Novel LiSrPO4:Dy3+ phosphors for white light-emitting diodes (w-LEDs) were synthesized by the conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation of LiSrPO4:Dy3+ materials. Luminescence properties results showed that the phosphor could be efficiently excited by the UV–vis light region from 250 to 460 nm, and it exhibited blue (483 nm) and yellow (574 nm) emission corresponding to 4F9/26H15/2 transitions and 4F9/26H13/2 transitions, respectively. The luminescence intensity of LiSrPO4:xDy3+ phosphor firstly increased and then decreased with increasing Dy3+ concentration, and reached the maximum at x = 0.03. It was found that concentration quenching occurred as a result of dipole-dipole interaction according to the Dexter's theory. The decay time was also determined for various concentrations of Dy3+ in LiSrPO4.  相似文献   
993.
A series of Co-Sn substituted barium ferrite particles have been successfully synthesized by a reverse microemulsion technique. The effects of heteroatom contents and precipitating agents were investigated, respectively. It was found that the presence of heteroatoms could enhance lattice parameters, affect morphology evolution and modulate magnetic properties. Particularly, an unusual saturation magnetization (>70.0 emu/g) could be achieved under low heteroatoms concentration due to preferential occupation in specific sites. Precipitating agents played a critical role in forming barium ferrite phase, only sufficient precipitating agents could produce high-purity phase. Besides, this method is not limited in the synthesis of Co-Sn substituted barium ferrite, it can be extended to other heteroatoms, such as Ni-Zr and La, and resultant products also show well crystalline phase and unique magnetic properties.  相似文献   
994.
MnCO3 with hierarchical superstructures such as chrysanthemum, straw-bundle, dumbbell and sphere-like were synthesized in water/ethanol system under environment-friendly hydrothermal condition. In the synthesis process, the CO2 in atmosphere was used as the source of carbonate ions and Schiff base was used as shape guiding-agent. The different superstructures of MnCO3 could be obtained by controlling the hydrothermal temperature, the molar ratio of manganous ions to the Schiff base, or the volume ratio of water to ethanol. A tentative growth mechanism for the generation of MnCO3 superstructures was proposed based on the rod–dumbbell–sphere model. Furthermore, the MnCO3 as precursor could be further successfully transferred to Mn2O3 microstructure after heating in the atmosphere at 500 °C, and the morphology of the Mn2O3 was directly determined by that of the MnCO3 precursor.  相似文献   
995.
A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO3H-MCM-41-NH2. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state 13C CP/MAS NMR and solid-state 29Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO3H-MCM-41-NH2) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.  相似文献   
996.
Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance (∼65-80%) and reflectivity (∼65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 mΩ cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.  相似文献   
997.
Experiments and mesoscopic modelling of dynamic testing of concrete   总被引:1,自引:0,他引:1  
Due to their large aggregates size and their heterogeneous microstructure, concretes are difficult materials to test at high strain-rates. Direct tensile tests, spalling tests and edge-on impact experiments have been especially developed and performed on a standard concrete (max grain size of 8 mm). The influence of free water on the high strain rate behaviour has been carefully evaluated. Numerical simulations of dynamic testing have been also performed using a mesoscopic approach in which the matrix and the aggregates are differentiated. Numerical and analytical homogenization methods have been employed to define a model-concrete which fits experimental data of simple and œdometric compression tests. Then, the numerical simulations with several random distributions of aggregates were conducted to validate the processing methods applied to the experimental data of the dynamic tests. Moreover an anisotropic damage model coupled to the mesoscopic approach has been used to simulate the dynamic behaviour of concrete under impact. It allows predicting the increase of strength and cracking density with strain-rate and the free water influence on the dynamic behaviour of concrete.  相似文献   
998.
Materials with cellular structure are gaining prominence in recent years due to improvements in production processes, that enable the manufacture of new materials, and biomechanics, that requires mechanical analysis of cellular structures such as bones. The possibility to use the Fracture Mechanics tools developed for the continua to the fracture of cellular materials is analyzed in the present paper. As proposed by Maiti et al. the fracture toughness of cellular solids can be obtained through two procedures: taking into account the stress at crack tip or the fracture toughness of the base material. Both procedures are analyzed and the equivalent R-curve and a cohesive law is obtained in function of the cell size and structure morphology. A critical truss length exists from which crack propagation goes from being governed by the energy dissipated to being governed by the stress field.  相似文献   
999.
Ductile failure of heterogeneous materials, such as cast aluminum alloys and discretely reinforced aluminums or DRA’s, initiates with cracking, fragmentation or interface separation of inclusions, that is followed by propagation in the matrix by a ductile mechanism of void nucleation and growth. Damage localizes in bands of intense plastic deformation between inclusions and coalesces into a macroscopic crack leading to overall failure. Ductile fracture is very sensitive to the local variations of the microstructure morphology. This is the first of a two part paper on the effect of microstructural morphology and properties on the ductile fracture in heterogeneous ductile materials. In this paper the locally enhanced Voronoi cell finite element method (LE-VCFEM) for rate-dependent porous elastic–viscoplastic materials is used to investigate the sensitivity of strain to failure to loading rates, microstructural morphology and material properties. A model is also proposed for strain to failure, incorporating the effects of important morphological parameters.  相似文献   
1000.
FeVO4 was synthesised by conventional solid state technique. Impedance measurements using a silver electrode were unsuccessful due to a solid state reaction between FeVO4 and Ag, forming α-AgVO3 and α-Fe2O3 at the interface. Impedance measurements, with a platinum electrode, reaffirmed that FeVO4 exhibits semiconductor behaviour in air. In a reducing atmosphere, 5% H2/Ar, high electronic conductivity, from 1 S cm−1 at 300 °C to 2 S cm−1 at 700 °C, was observed with an activation energy of 0.13(1) eV. X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry data determined that the change in electronic conductivity was due to the degradation of the material into FeV2O4 and α-Fe2O3. It is believed that the conduction was due to electron hopping between vanadium d-orbitals. Neither FeVO4 nor FeV2O4 are deemed suitable as anode materials for solid oxide fuel cells, due to redox instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号