全文获取类型
收费全文 | 72篇 |
免费 | 32篇 |
国内免费 | 2篇 |
专业分类
综合类 | 6篇 |
化学工业 | 5篇 |
金属工艺 | 16篇 |
矿业工程 | 18篇 |
能源动力 | 2篇 |
冶金工业 | 58篇 |
原子能技术 | 1篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2022年 | 5篇 |
2021年 | 4篇 |
2020年 | 3篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 6篇 |
2016年 | 10篇 |
2015年 | 4篇 |
2014年 | 7篇 |
2013年 | 9篇 |
2012年 | 7篇 |
2011年 | 3篇 |
2010年 | 5篇 |
2009年 | 4篇 |
2008年 | 4篇 |
2007年 | 3篇 |
2006年 | 5篇 |
2005年 | 1篇 |
2003年 | 1篇 |
2002年 | 4篇 |
2001年 | 5篇 |
2000年 | 2篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1988年 | 1篇 |
排序方式: 共有106条查询结果,搜索用时 15 毫秒
91.
Jarosite-type precipitates mediated by YN22, Sulfobacillus thermosulfidooxidans, and their influences on strain 总被引:2,自引:0,他引:2
To have a better understanding on the properties of the jarosite-type precipitate synthesized by Sulfobacillus thermosulfidooxidans, the evolution of the S. thermosulfidooxidans-mediated precipitation and the influence of the precipitate on this species, a newly isolated strain (YN22) ofS. thermosulfidooxidans was cultured in a medium containing Fe^2+ as energy source under optimal conditions (pH 1.5, 53 ℃, 0.2 g/L yeast extract, 30 g/L Fe2SO4·7H2O and 170 r/min), added with or without glass beads. Remarkable differences were found in the oxidation rate of Fe^2+, the precipitate yield ofjarosite-type compounds and the population density between the two groups of cultures. The group with glass beads has a 6 h faster Fe^2+ oxidation, 6 h earlier precipitation, 78% higher precipitate yield and much lower population density than those without glass beads. XRD, EDS, FTIR and SEM analysis reveals that the precipitates originated from both groups are a mixture of potassium jarosite and ammoniojarosite, with morphological features similar to the latter. The results of the test referring to influence of the precipitates on YN22 show that the precipitate from the group without glass beads has no apparent influence on Fe^2+ oxidation rate of YN22 and only a limited influence on growth of the strain, whereas that from the group with glass beads remarkably inhibits the growth and Fe^2+ oxidation ability of YN22 when a precipitate content over 4 g/L is used. 相似文献
92.
Jing-hua FANG Yong LIU Wan-li HE Wen-qing QIN Guan-zhou QIU Jun WANG 《中国有色金属学会会刊》2017,27(5):1150-1155
Jarosite and extracellular polymer substance generated during pure culture and bioleaching process have been widely accepted the main transformation of decreasing iron in the medium. In the present work, acidophilus bioleaching organisms Ferroplasma thermophilum, Leptospirillum ferriphilum and Acidithioobacillus ferrooxidans were cultured. It was found that they can live in low pH environment, and more than 10 particles in each cell intracellular nano-particles are synthesized in the cells. By analyzing the morphology and chemical composition of nano-particles, they were found to contain iron, and the three microorganisms belonged to high-yielding strains. The results show that the transformation of the decreasing iron ions is not only generating jarosite, but also taken into cells and synthesizing ferruginous nano-particles. 相似文献
93.
锌冶炼渣综合利用与节能减排的工艺探讨 总被引:1,自引:0,他引:1
本文针对单一湿法炼锌企业生产过程中产生的中间渣和弃渣中的有价金属、废水、余热问题,从渣中有价金属的含量、渣量、经济性、环保性等几方面进行分析,探讨了高酸浸出—低污染黄铵铁矾湿法炼锌工艺产生的中间渣及弃渣的综合利用工艺及节能减排措施,并对实施效果进行了估算。 相似文献
94.
开展了两种加压浸出工艺处理锌浸出渣的试验研究。“加压还原浸出+氧压浸出”取代原针铁矿工艺的“三段逆流热酸浸出+还原”,锌焙烧矿到铅渣的渣率为15.74%,锌、铁、铜、铟、镁的浸出率分别为99.32%、93.50%、95.02%、91.03%、99.97%,各项指标均优于原工艺,锌、铟的浸出率分别提高了1.82、11.03个百分点,反应时间由14 h缩短为4 h,液固分离次数由4次减少为2次。“两段逆流加压浸出”取代原黄钾铁矾工艺的“硅浸+预中和+黄钾铁矾沉铁”,锌焙烧矿到二段渣的渣率为35.88%,锌、铁、铜、铟、镁的浸出率分别为98.50%、4.94%、90.48%、2.69%、93.77%,各项指标均优于原工艺,浸出后液(相当于水解除铁后液)可以直接返回中性浸出工序,反应时间由16 h缩短为4 h,液固分离次数由3次减少为2次。加压浸出采用密闭的加压釜,更容易实现整个炼锌系统蒸汽平衡,无需额外增加蒸汽锅炉。 相似文献
95.
A complete characterization was carried out on a jarositic residue from the zinc industry. This residue consists of ammonium jarosite, with some contents of H3O+, Ag+, Pb2+, Na+ and K+ in the alkaline “sites” and, Cu2+ and Zn2+ as a partial substitution of iron. The formula is: [Ag0.001Na0.07K0.02Pb0.007(NH4)0.59(H3O)0.31]Fe3(SO4)2(OH)6. Some contents of franklinite (ZnO·Fe2O3), gunninguite (ZnSO4·H2O) and quartz were also detected. The jarosite is interconnected rhombohedral crystals of 1–2 μm, with a size distribution of particles of 2–100 μm, which could be described by the Rosin–Rammler model.The alkaline decomposition curves exhibit an induction period followed by a progressive conversion period; the experimental data are consistent with the spherical particle with shrinking core model for chemical control. The alkaline decomposition of the ammonium jarosite can be shown by the following stoichiometric formula:NH4Fe3(SO4)2(OH)6(s)+3OH(aq)−→(NH)4(aq)++3Fe(OH)3(s)+2SO4(aq)2−.The decomposition (NaOH) presents an order of reaction of 1.1 with respect to the [OH−] and an activation energy of 77 kJ mol−1. In NaOH/CN− media, the process is of 0.8 order with respect to the OH− and 0.15 with respect to the CN−. The activation energy was 46 kJ mol−1. Products obtained are amorphous. Franklinite was not affected during the decomposition process. The presence of this phase is indicative that the franklinite acted like a nucleus during the ammonium jarosite precipitation. 相似文献
96.
97.
98.
《Canadian Metallurgical Quarterly》2013,52(1):11-23
AbstractThe hydrothermal conversion of K jarosite, Pb jarosite, Na jarosite, Na–Ag jarosite, AsO4 containing Na jarosite and in situ formed K jarosite and Na jarosite to hematite was investigated. Potassium jarosite is the most stable jarosite species. Its conversion to hematite in the absence of Fe2O3 seed occurred only partially after 5 h reaction at >240°C. In the presence of Fe2O3 seed, the conversion to hematite was nearly complete within 2 h at 225°C and was complete at 240°C. The rate of K jarosite precipitation, in situ at 225°C in the presence of 50 g L?1 Fe2O3 seed, is faster than its rate of hydrothermal conversion to hematite. In contrast, complete conversion of either Pb jarosite or Na–Pb jarosite to hematite and insoluble PbSO4 occurs within 0·75 h at 225°C in the presence of 20 g L?1 Fe2O3 seed. Dissolved Fe(SO4)1·5 either inhibits the conversion of Pb jarosite or forms Pb jarosite from any PbSO4 generated. The hydrothermal conversion of Na–Ag jarosite to hematite was complete within 0·75 h at 225°C in the presence of 20 g L?1 Fe2O3 seed. The Ag dissolved during hydrothermal conversion and reported to the final solution. However, the presence of sulphur or sulphide minerals caused the reprecipitation of the dissolved Ag. The conversion of AsO4 containing Na jarosite at 225°C in the presence of 20 g L?1 Fe2O3 seed was complete within 2 h, for H2SO4 concentrations <0·4M. Increasing AsO4 contents in the Na jarosite resulted in a linear increase in the AsO4 content of the hematite, and ~95% of the AsO4 remained in the conversion product. Increasing temperatures and Fe2O3 seed additions significantly promote the hydrothermal conversion of in situ formed Na jarosite at 200–240°C. However, the conversion of previously synthesised Na jarosite seems to proceed to a greater degree than that of in situ formed Na jarosite.On a examiné la conversion hydrothermale en hématite de la jarosite de K, de la jarosite de Pb, de la jarosite de Na, de la jarosite de Na-Ag, de la jarosite de Na contenant de l’AsO4, et de la jarosite de K et de la jarosite de Na qui sont formées in situ. La jarosite de potassium est la plus stable des espèces de jarosite. Sa conversion en hématite ne se produisait que partiellement après 5 h de réaction à >240°C en l’absence d’amorce de Fe2O3. En présence d’amorce de Fe2O3, la conversion en hématite était presque complète à moins de 2 h à 225°C et était complète à 240°C. La vitesse de précipitation de la jarosite de K, in situ à 225°C en présence de 50 g L?1 d’amorce de Fe2O3, est plus rapide que sa vitesse de conversion hydrothermale en hématite. Par contraste, la conversion complète soit de la jarosite de Pb ou de la jarosite de Na-Pb en hématite et en PbSO4 insoluble se produit à moins de 0·75 h à 225°C en présence de 20 g L?1 d’amorce de Fe2O3. Le Fe(SO4)1·5 dissous soit inhibe la conversion de la jarosite de Pb ou forme de la jarosite de Pb à partir de tout PbSO4 produit. La conversion hydrothermale de la jarosite de Na-Ag en hématite était complète à moins de 0·75 h à 225°C en présence de 20 g L?1 d’amorce de Fe2O3. L’Ag se dissolvait lors de la conversion hydrothermale et se rapportait dans la solution finale. Cependant, la présence de soufre ou de minéraux sulfurés avait pour résultat la re-précipitation de l’Ag dissous. La conversion de la jarosite de Na contenant de l’AsO4 à 225°C en présence de 20 g L?1 d’amorce de Fe2O3 était complète à moins de 2 h, avec des concentrations d’H2SO4 <0·4 M. L’augmentation de la teneur en AsO4 de la jarosite de Na avait pour résultat une augmentation linéaire de la teneur en AsO4 de l’hématite et ~95% de l’AsO4 demeurait dans le produit de conversion. L’augmentation de la température et d’additions d’amorce de Fe2O3 favorisait significativement la conversion hydrothermale de la jarosite de Na qui est formée in situ à 220–240°C. Cependant, la conversion de la jarosite de Na synthétisée antérieurement semblait se produire à un plus grand degré que celle de la jarosite de Na qui est formée in situ. 相似文献
99.
A synthesis of silver ammonium jarosite has been carried out obtaining a single-phase product with the formula: [(NH4)0.71(H3O)0.25Ag0.040]Fe2.85(SO4)2(OH)5.50. The product consists on compact spherical aggregates of rhombohedral crystals. The nature and kinetics of alkaline decomposition and also of cyanidation have been determined. In both processes an induction period followed by a conversion period have been observed. During decomposition, the inverse of the induction period is proportional to [OH−]0.75 and an apparent activation energy of 80 kJ mol− 1 was obtained; during the conversion period, the process is of 0.6 order (OH− concentration) and an activation energy of 60 kJ mol− 1 was obtained. During cyanidation, the inverse of the induction period is proportional to [CN−]0.5 and an apparent activation energy of 54 kJ mol− 1 was obtained; during the conversion period the process is of 0 order (CN− concentration) and an activation energy of 52 kJ mol− 1 was obtained. Results obtained are consistent with the spherical particle model with decreasing core and chemical control, in the experimental conditions employed. For both processes and in the basis of the behaviour described, two mathematical models, including the induction and conversion periods, were established, that fits well with the experimental results obtained. Cyanidation rate of different jarosite materials in NaOH media have also been established: this reaction rate at 50 °C is very high for potassium jarosite, high and similar for argentojarosite and ammonium jarosite, lower for industrial ammonium jarosite and negligible for natural arsenical potassium jarosite and beudantite. These results confirm that the reaction rate of cyanidation decreases when the substitution level in the jarosite lattice increases. 相似文献
100.
研究了矿物颗粒、黄钾铁矾和二氧化硅三种固体对萃取过程中界面乳化物形成的影响。通过考察界面乳化物生成率和水相透光度的变化来评价形成乳化物的乳化程度。结果表明,体系中有矿物颗粒存在时,界面乳化物生成率很高,加入8g/L矿物颗粒,静置10min后,界面乳化物的生成率为40.3%。体系中有二氧化硅固体存在时,界面乳化物生成率也很高,水相乳化程度严重。而黄钾铁矾的分相时间短,乳化物生成率低,与其具有较强的亲水性有关。 相似文献