首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1027篇
  免费   362篇
  国内免费   41篇
电工技术   73篇
综合类   33篇
化学工业   295篇
金属工艺   15篇
机械仪表   25篇
建筑科学   26篇
矿业工程   4篇
能源动力   19篇
轻工业   31篇
水利工程   3篇
石油天然气   18篇
武器工业   4篇
无线电   361篇
一般工业技术   460篇
冶金工业   20篇
原子能技术   17篇
自动化技术   26篇
  2024年   7篇
  2023年   28篇
  2022年   18篇
  2021年   49篇
  2020年   92篇
  2019年   107篇
  2018年   93篇
  2017年   108篇
  2016年   76篇
  2015年   109篇
  2014年   108篇
  2013年   89篇
  2012年   76篇
  2011年   74篇
  2010年   55篇
  2009年   41篇
  2008年   62篇
  2007年   49篇
  2006年   41篇
  2005年   36篇
  2004年   26篇
  2003年   15篇
  2002年   16篇
  2001年   9篇
  2000年   11篇
  1999年   12篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1994年   5篇
  1992年   2篇
  1987年   1篇
  1974年   1篇
排序方式: 共有1430条查询结果,搜索用时 15 毫秒
111.
112.
113.
114.
简要介绍了国内外各种脱硫技术的发展及应用。为了开发具有自主知识产权的,新型高效的烟气脱硫技术,提出利用磁稳流化床技术进行磁性颗粒催化氧化脱硫新思路,并对该脱硫反应的机理、实验方法以及技术特点进行了初步研究。  相似文献   
115.
Bicontinuous, interfacially jammed emulsion gels (bijels) are a class of soft solid materials in which interpenetrating domains of two immiscible fluids are stabilized by an interfacial colloidal monolayer. Such structures form through the arrest of the spinodal decomposition of an initially single‐phase liquid mixture containing a colloidal suspension. With the use of hexalmethyldisilazane, the wetting character of silica colloids, ranging in size and dye content, can be modified for fabricating a novel bijel system comprising the binary liquid ethanediol–nitromethane. Unlike the preceding water‐lutidine based system, this bijel is stable at room temperature and its fabrication and resultant manipulation are comparatively straightforward. The new system has facilitated three advancements: firstly, we use sub 100 nm silica particles to stabilize the first bijel made from low molecular weight liquids that has domains smaller than ten micrometers. Secondly, our new and robust bijel permits qualitative rheological work which reveals the bijel to be significantly elastic and self healing whilst its domains are able to break, reform and locally rearrange. Thirdly, we encapsulate the ethanediol–nitromethane bijel in Pickering drops to form novel particle‐stabilized bicontinuous multiple emulsions that we christen bijel capsules. These emulsions are stimuli responsive – they liberate their contained materials in response to changes in temperature and solvency, and hence they show potential for controlled release applications.  相似文献   
116.
Chemical vapor deposition of a thin titanium dioxide (TiO2) film on lightweight native nanocellulose aerogels offers a novel type of functional material that shows photoswitching between water‐superabsorbent and water‐repellent states. Cellulose nanofibrils (diameters in the range of 5–20 nm) with native crystalline internal structures are topical due to their attractive mechanical properties, and they have become relevant for applications due to the recent progress in the methods of their preparation. Highly porous, nanocellulose aerogels are here first formed by freeze‐drying from the corresponding aqueous gels. Well‐defined, nearly conformal TiO2 coatings with thicknesses of about 7 nm are prepared by chemical vapor deposition on the aerogel skeleton. Weighing shows that such TiO2‐coated aerogel specimens essentially do not absorb water upon immersion, which is also evidenced by a high contact angle for water of 140° on the surface. Upon UV illumination, they absorb water 16 times their own weight and show a vanishing contact angle on the surface, allowing them to be denoted as superabsorbents. Recovery of the original absorption and wetting properties occurs upon storage in the dark. That the cellulose nanofibrils spontaneously aggregate into porous sheets of different length scales during freeze‐drying is relevant: in the water‐repellent state they may stabilize air pockets, as evidenced by a high contact angle, in the superabsorbent state they facilitate rapid water‐spreading into the aerogel cavities by capillary effects. The TiO2‐coated nanocellulose aerogels also show photo‐oxidative decomposition, i.e., photocatalytic activity, which, in combination with the porous structure, is interesting for applications such as water purification. It is expected that the present dynamic, externally controlled, organic/inorganic aerogels will open technically relevant approaches for various applications.  相似文献   
117.
Microscale, quasi‐2D Au–polymer brush composite objects are fabricated by a versatile, controllable process based on microcontact printing followed by brush growth and etching of the substrate. These objects fold into 3D microstructures in response to a stimulus: crosslinked poly(glycidyl methacrylate) (PGMA) brushes fold on immersion in MeOH, and poly(methacryloxyethyl trimethylammonium chloride) (PMETAC) brushes fold on addition of salt. Microcages and microcontainers are fabricated. A multistep microcontact printing process is also used to create sheets of Au–PGMA bilayer lines linked by a PGMA film, which fold into cylindrical tubes. The bending of these objects can be predicted, and hence predefined during the synthesis process by controlling the parameters of the gold layer, and of the polymer brush.  相似文献   
118.
Recently, a new multifunctional, bio‐inorganic nanocomposite membrane with the ability to self‐regulate the release of insulin in response to blood glucose (BG) levels was reported. Herein, the application of this material as part of a small, implantable, closed‐loop insulin delivery device designed to continuously monitor BG concentrations and regulate insulin release is proposed. The insulin delivery device consists of a nanocomposite glucose‐responsive plug covalently bound to an insulin reservoir made of surface‐modified silicone. The plug is prepared with crosslinked bovine serum albumin (BSA) and enzymes (glucose oxidase (GOx) and catalase (CAT)), pH‐responsive hydrogel nanoparticles, and multifunctional MnO2 nanoparticles. The plug functions both as a glucose sensor and controlled delivery unit to release higher rates of insulin from the reservoir in response to hyperglycemic BG levels and basal insulin rates at normal BG concentration. The surfaces of the device are modified by silanization followed by PEGylation to ensure its safety and biocompatibility and the stability of encased insulin. Our results show that insulin release can be modulated in vitro in response to glucose concentrations. In vivo experiments show that the glycemia of diabetic rats can be controlled with implantation of the prototype device. The glucose‐responsiveness of the device is also demonstrated by rapid drop in BG level after challenging diabetic rats with bolus injection of glucose solution. In addition, it is demonstrated that surface PEGylation of the device is necessary for reducing the immune response of the host to the implanted foreign object and maintaining insulin stability and bioactivity. With this molecular architecture and the bio‐inorganic nanocomposite plug, the device has the ability to maintain normal BG levels in diabetic rats.  相似文献   
119.
The development of microchemomechanical systems (MCMS) as an analogy to microelectromechanical systems (MEMS) is reviewed, with the distinction that the mechanical actuation of microscale structures is effected by chemical cues as opposed to electricity. The intellectual motivation to pursue MCMS, or the creation of integrated chemical‐stimuli‐responsive devices, is that such structures are widely observed in nature. From a practical standpoint, since chemicals can readily diffuse and produce changes over large distances, this approach is especially attractive in enabling wireless and autonomous devices at small size scales.  相似文献   
120.
Inspired by the geometric structure of ecribellate spider capture silk and its spinning characteristics, we propose a one‐step electrohydrodynamic method to fabricate bead‐on‐string heterostructured fibers (BSHFs). By combining electrospinning and electrospraying strategies using a sprayable outer fluid with low viscosity and a spinnable inner fluid with high viscosity in a coaxial jetting process, hydrophilic poly(ethylene glycol) beads are successfully imprinted on a hydrophobic polystyrene string. It is demonstrated that the BSHFs are capable of intelligently responding to environmental change. With a change in relative humidity, the fibers show a segmented swelling and shrinking behavior in the “bead” parts whereas the “string” parts remain the same. The elastic BSHFs with alternating hydrophilic and hydrophobic surface characteristics represent a type of mesoscale analogues that block copolymers and may bring about new properties and applications. Moreover, the combined electrohydrodynamic approach developed herein should open new routes to multifunctional one‐dimensional heterostructured materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号