首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15745篇
  免费   1809篇
  国内免费   423篇
电工技术   335篇
综合类   249篇
化学工业   4988篇
金属工艺   345篇
机械仪表   521篇
建筑科学   117篇
矿业工程   40篇
能源动力   3378篇
轻工业   1298篇
水利工程   13篇
石油天然气   21篇
武器工业   9篇
无线电   2866篇
一般工业技术   3172篇
冶金工业   165篇
原子能技术   188篇
自动化技术   272篇
  2024年   52篇
  2023年   605篇
  2022年   1349篇
  2021年   1586篇
  2020年   827篇
  2019年   693篇
  2018年   648篇
  2017年   757篇
  2016年   741篇
  2015年   747篇
  2014年   994篇
  2013年   983篇
  2012年   996篇
  2011年   1404篇
  2010年   905篇
  2009年   809篇
  2008年   690篇
  2007年   641篇
  2006年   484篇
  2005年   349篇
  2004年   258篇
  2003年   230篇
  2002年   205篇
  2001年   176篇
  2000年   136篇
  1999年   68篇
  1998年   141篇
  1997年   86篇
  1996年   57篇
  1995年   31篇
  1994年   43篇
  1993年   26篇
  1992年   30篇
  1991年   41篇
  1990年   29篇
  1989年   29篇
  1988年   15篇
  1987年   17篇
  1986年   15篇
  1985年   22篇
  1984年   11篇
  1983年   10篇
  1982年   5篇
  1981年   3篇
  1980年   11篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1975年   3篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
In this paper, Si/carbon nanotubes@melamine-formaldehyde resin (MFR)-based carbon (Si/CNTs@C) composites have been fabricated by surface modification, electrostatic self-assembly, cross-linking of MFR under hydrothermal treatment and further carbonization. The microstructure of the Si/CNTs@C composites was characterized, and the effects of CNTs content in Si/CNTs@C composites on their electrochemical performances were also investigated in detail. The results indicate Si/CNTs@C composites as anode materials of Li-ion batteries exhibit better high-rate and cycling performances compared to Si and Si@MFR-based carbon composites. Notably, Si/CNTs@C composites with 10.4 wt% CNTs show specific capacities of 1900, 1879, 1,688, 1,394, 1,189 mAh·g−1 at 0.2, 0.5, 1, 2, and 3 A·g−1, respectively. Even at 4 and 5 A·g−1, their capacities still reach 970 and 752 mAh·g−1, respectively. Moreover, they deliver a reversible capacity of 1,184 mAh·g−1 at 0.5 A·g−1 after 100 cycles. Therefore, the reasonable structure is of great significance for enhancing the electrochemical performances of Si-based composites.  相似文献   
82.
Hybrid anion exchange membranes (AEMs) were prepared via chemically functionalizing and crosslinking poly(styrene-b-[ethylene-co-butylene]-b-styrene) (SEBS) copolymers and low molecular weight homo-polystyrene (hPS). Via sequential chloromethylation, crosslinking, quaternization, and alkalization, a series of hPS/SEBS AEMs were obtained with varying content of hPS. Systematic structural, morphological, mechanical, absorption, and transport measurements reveal that these properties depend on the total PS content in the membranes. Particularly, increasing total PS content causes (a) PS domains in the AEMs transition the cylindrical morphology to lamella-like morphology with comparable correlation length; (b) Young's modulus, water uptake, swelling ratio, ionic exchange capacity and ionic conductivity of the AEMs, and Tg of PS phase increase. In addition, the alkaline stability of the hPS/SEBS AEMs is also improved by addition of hPS. These findings suggest that the proposed method can develop high performance SEBS AEMs that are suitable for fuel cell applications.  相似文献   
83.
Nafion-117/PEDOT composite membranes were synthesized by in situ chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) using ammonium persulfate as an oxidant. The polymerization of EDOT in Nafion membranes for various EDOT/oxidant treatment sequences was studied for the first time. PEDOT introduction leads to a slight decrease in both the ion-exchange capacity and water uptake of the composite membranes, as well as to an increase in cationic transport. Membranes initially treated with an oxidant exhibit better conductivity and lower hydrogen permeability. The effect of both modification of Nafion-117 membranes by PEDOT and hot-pressing of hydrogen-oxygen membrane-electrode assemblies (MEAs) on the performance of proton-exchange membrane fuel cells was studied. The maximum power density of the fabricated MEAs increases 1.5-fold: from 510 (for a pristine Nafion-117 membrane) to 810 mW cm−2 (for a membrane modified by PEDOT). The current density at a voltage of 0.4 V reaches 1248 and 2246 mA cm−2, respectively.  相似文献   
84.
付凤艳  邢广恩 《化工学报》2021,72(Z1):42-52
阴离子交换膜燃料电池(AEMFCs)因其具有环境友好、可使用非贵金属催化剂、电极反应速率快等特点而受到广泛关注。阴离子交换膜(AEMs)是AEMFCs的核心部件,其性质决定着燃料电池的性能、能量效率和使用寿命。从具有不同骨架结构的聚合物出发,介绍了聚苯醚、聚芳醚砜、聚烯烃和聚苯并咪唑等不同聚合物骨架结构的阴离子交换膜的制备、性能和应用,同时对具有不同聚合物骨架结构的阴离子交换膜在应用方面存在的问题及应用前景进行了评论和展望。  相似文献   
85.
The oxidation of Ni to NiO in solid oxide fuel cell (SOFC) anode will result in large bulk volume change, which may change the interfaces of the two phases in the anode cermet and thus may cause significant performance degradation. The reduction and oxidation (redox) of the Ni/YSZ cermet were studied at 800 ℃. Anodic polarization measurements were performed before and after redox cycles. The anode current density at an overpotential of 100 mV kept decreasing during the whole redox treatment. It decreased from 19.11 to 7.95 mA·cm-2 after two redox cycles. Anode supported unit cell was assembled for cell's discharge measurements. Cell performance declined after each redox cycle. The maximum power density decreased from 126.28 to 40.32 mW·cm-2 . The microstructural changes after redox cycling were recorded using scanning electron microscopy (SEM). The results reveal that after re-oxidation, the Ni gets coarse and has a higher porosity; the nickel network structure turns to be desultory.  相似文献   
86.
Yttria doped zirconia has been widely used as electrolyte materials for solid oxide fuel cells (SOFC). Plasma spraying is a cost-effective process to deposit YSZ electrolyte. In this study, the 8 mol% Y2O3 stabilized ZrO2 (YSZ) layer was deposited by low pressure plasma spraying (LPPS) and atmospheric plasma spraying (APS) with fused-crushed and agglomerated powders to examine the effect of spray method and particle size on the electrical conductivity and gas permeability of YSZ coating. The microstructure of YSZ coating was characterized by scanning electron microscopy and x-ray diffraction analysis. The results showed that the gas permeability was significantly influenced by powder structure. The gas permeability of YSZ coating deposited by fused-crushed powder is one order lower in magnitude than that by agglomerated powder. Moreover, the gas permeability of YSZ deposited by LPPS is lower than that of APS YSZ. The electrical conductivity of the deposits through thickness direction was measured by potentiostat/galvanostat based on three-electrode assembly approach. The electrical conductivity of YSZ coating deposited by low pressure plasma spraying with fused-crushed powder of small particle size was 0.043 S cm−1 at 100 °C, which is about 20% higher than that of atmospheric plasma spraying YSZ with the same powder. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   
87.
Nanocrystalline titania films codoped with aluminum and boron were prepared by cathodic vacuum arc deposition. In the process, titanium alloy target was used under an O2/Ar atmosphere, and sensitization of films were carried out by natural dye-sensitized complex in anhydrous ethanol. The structure, surface morphology and UV-vis spectra of titania films codoped were measured by X-ray diffraction analysis, scanning electron microscopy and ultraviolet-visible spectrometer. Theas-deposited films are found to be amorphous. The films annealed were examinedto be of anatase structure with orientation along the (101) planes, the averagecrystal size is in the range between 41 and 45 nm. SEM results show that thereare some pores in the codoped titania films, the optical properties of the dye-sensitized films were also measured which reveals that the spectral responses of films shift to the visible region. Under simulated sunlight illumination, the overall energy conversion efficiency of dye-sensitized nanocrystalline solar cell is 0.9%.  相似文献   
88.
In this work, nanopowders of perovskite cathode materials (La0.8Sr0.2MnO3−δ, La0.8Sr0.2FeO3−δ, and La0.8Sr0.2CoO3−δ), for use in solid oxide fuel cells (SOFC), were successfully synthesized, using induction plasma techniques. Their compositions, structures, morphology, particle size distributions, and BET specific surface areas were determined for comparison with their counterparts prepared by the Pechini method and by the glycine-nitrate combustion (GNC) technique. The particle sizes of the plasma-synthesized powders are mostly around 63 nm. These plasma-synthesized powders are generally globular, their BET specific surface areas being about 26 m2g−1, approximately twice those of powders prepared by the GNC and Pechini methods. These plasma-synthesized powders are readily reproducible and are not agglomerated. Their individual particle sizes and distributions are very independent of their composition.  相似文献   
89.
Direct current Suspension Plasma Spraying (SPS) allows depositing finely structured coatings. This article presents an analysis of the influence of plasma instabilities on the yttria-stabilized suspension drops fragmentation. A particular attention is paid to the treatment of suspension jet or drops according to the importance of voltage fluctuations (linked to those of the arc root) and depending on the different spray parameters such as the plasma forming gas mixture composition and mass flow rate and the suspension momentum. By observing the suspension drops injection with a fast shutter camera and a laser flash sheet triggered by a defined transient voltage level of the plasma torch, the influence of plasma fluctuations on jet or drops fragmentation is studied through the deviation and dispersion trajectories of droplets within the plasma jet. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   
90.
Cardiovascular disease (CVD) is the leading cause of death and loss of productive life years in the world. The underlying syndrome of CVD, atherosclerosis, is a complex disease process, which involves lipid metabolism, inflammation, innate and adaptive immunity, and many other pathophysiological aspects. Furthermore, CVD is influenced by genetic as well as environmental factors. Early detection of CVD and identification of patients at risk are crucial to reduce the burden of disease and to allow personalized treatment. As established risk factors fail to accurately predict which part of the population is likely to suffer from the disease, novel biomarkers are urgently needed. Proteomics can play a significant role in identifying these biomarkers. In this review, we describe the progress made in proteome profiling of the atherosclerotic plaque and several novel sources of potential biomarkers, including circulating cells and plasma extracellular vesicles. The importance of longitudinal biobanking in biomarker discovery is highlighted and exemplified by several plaque proteins identified in the biobank study Athero-Express. Finally, we discuss the PTMs of proteins that are involved in atherosclerosis, which may become one of the foci in the ongoing quest for biomarkers through proteomics of plaque and other matrices relevant to the progression of atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号