首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3992篇
  免费   407篇
  国内免费   220篇
电工技术   652篇
综合类   201篇
化学工业   750篇
金属工艺   531篇
机械仪表   68篇
建筑科学   23篇
矿业工程   148篇
能源动力   466篇
轻工业   16篇
水利工程   5篇
石油天然气   39篇
武器工业   18篇
无线电   487篇
一般工业技术   737篇
冶金工业   345篇
原子能技术   83篇
自动化技术   50篇
  2024年   16篇
  2023年   115篇
  2022年   134篇
  2021年   141篇
  2020年   178篇
  2019年   155篇
  2018年   115篇
  2017年   132篇
  2016年   157篇
  2015年   136篇
  2014年   201篇
  2013年   206篇
  2012年   273篇
  2011年   293篇
  2010年   263篇
  2009年   231篇
  2008年   196篇
  2007年   283篇
  2006年   231篇
  2005年   230篇
  2004年   199篇
  2003年   164篇
  2002年   121篇
  2001年   87篇
  2000年   87篇
  1999年   54篇
  1998年   33篇
  1997年   37篇
  1996年   24篇
  1995年   19篇
  1994年   24篇
  1993年   20篇
  1992年   19篇
  1991年   6篇
  1990年   7篇
  1989年   11篇
  1988年   7篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1978年   1篇
  1951年   3篇
排序方式: 共有4619条查询结果,搜索用时 15 毫秒
961.
Solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) with optimized components and structures are considered to be crucial for lithium-ion batteries. Here, gradient lithium oxysulfide (Li2SOx, x = 0, 3, 4)/uniform lithium fluoride (LiF)-type SEI is designed in situ by using hexafluoroisopropyl trifluoromethanesulfonate (HFPTf) as electrolyte additive. HFPTf is more likely to be reduced on the surface of Li anode in electrolytes due to its high reduction potential. Moreover, HFPTf can make Li+ desolvated easily, leading to the increase in the flux of Li+ on the surface of Li anode to avoid the growth of Li dendrites. Thus, the cycling stability of Li||Li symmetric cells is improved to be 1000 h at 0.5 mA cm−2. In addition, HFPTf-contained electrolyte could make Li||NCM811 batteries with a capacity retention of 70% after 150 cycles at 100 mA g−1, which is attributed to the formation of uniform and stable CEI on the cathode surface for hindering the dissolvation of metal ions from the cathode. This study provides effective insights on the strong ability of additives to adjust electrolytes in “one phase and two interphases” (electrolyte and SEI/CEI).  相似文献   
962.
Chloride ion batteries (CIBs) are a promising type of energy storage device due to their high theoretical volumetric energy density and abundant reserves of chlorine‐containing precursors. However, the unsatisfactory cycling performance and structural instability of cathode materials hinder their practical application. In this work, layered double hydroxides (LDHs), which consist of a trimetallic NiVAl hydroxide host matrix and interlayer Cl?, are demonstrated to be high‐performance cathode materials for CIBs. The Ni2V0.9Al0.1‐Cl LDH is capable of delivering a high initial capacity of 312.2 mAh g?1 at 200 mA g?1 and an ultralong life over 1000 cycles (with a capacity higher than 113.8 mAh g?1). Such a long cycling life exceeds that of any reported CIBs. The remarkable Cl?‐storage performance of the Ni2V0.9Al0.1‐Cl LDH is ascribed to the synergetic contributions from Vm+ (high redox activity), Ni2+ (favorable electronic structure), and inactive Al3+ (enhances the structural stability), which is revealed by a comprehensive study that utilizes synchrotron X‐ray absorption near‐edge structure experiments, kinetic investigations, and theoretical calculations. This study provides an effective strategy to achieve superior rechargeable batteries, which are applicable to large‐scale energy storage and power grids.  相似文献   
963.
Binders play a critical role in stabilizing the sulfur cathode of Li‐S and Na‐S batteries. Over the past decade, the design of binder molecules has gone through tremendous evolution from primarily maintaining the structural integrity of the electrode against volume change to rationally immobilizing polysulfide intermediate and facilitating electron/ion transport in the charge and discharge process. This article reviews the development of binder for Li‐S and Na‐S batteries from the perspective of molecular design, and comprehensively discusses the correlation between the functions of the binder molecules and the cell performance. It also points out the future challenge and the potential solutions to address them.  相似文献   
964.
Li‐rich layered oxides are promising cathode materials for next‐generation Li‐ion batteries because of their extraordinary specific capacity. However, the activation process of the key active component Li2MnO3 in Li‐rich materials is kinetically slow, and the complex phase transformation with electrode/electrolyte side reactions causes fast capacity/voltage fading. Herein, a simple thermal treatment strategy is reported to simultaneously tackle these challenges. The introduction of a urea thermal treatment on Li‐rich material Li1.87Mn0.94Ni0.19O3 leads to oxygen deficiencies and partially reduced Mn ions on the oxide surface for activating the Li‐rich phase. In situ synchrotron study confirms that the urea‐treated cathode shows much faster Li extraction from both Li and transition metal layers with less oxygen evolution upon charging than that of untreated counterparts. Moreover, the decomposition products of urea during thermal treatment subsequently deposit on the surface of cathode material, leading to a unique passivation layer against side reactions between electrode and electrolyte. Soft X‐ray absorption spectroscopy reveals the structural evolution mechanism with a significantly suppressed dissolution of Mn species over cycling measurement. The urea‐treated Li1.87Mn0.94Ni0.19O3 shows accelerated activation kinetics to reach high capacity of 270 mA h g–1 and demonstrates excellent capacity retention of 98.49% over 300 cycles with slower voltage decay.  相似文献   
965.
Demand for energy in day to day life is increasing exponentially. However, existing energy storage technologies like lithium ion batteries cannot stand alone to fulfill future needs. In this regard, potassium ion batteries (KIBs) that utilize K ions in their charge storage mechanism have attracted considerable attention due to their unique properties and are therefore established as one of the future battery systems of interest among the scientific community. Nevertheless, the development and identification of appropriate electrode materials is very essential for practical applications. This review features the current development in KIBs electrode and electrolyte materials, the present challenges facing this technology (in the commercial aspect), and future aspects to develop fully functional KIBs. The potassium storage mechanisms, evolution of the KIBs, and the advantages and disadvantages of each category of materials are included. Additionally, various approaches to enhance the electrochemical performances of KIBs are also discussed. This review is not only an amalgamation of different viewpoints in literature, but also contains concise perspectives and strategies. Moreover, the potential emergence of a novel class of K‐based dual ion batteries is also analyzed for the first time.  相似文献   
966.
研究了热子涂层的原材料粒度对热子绝缘层质量的影响,粒度过细或过粗,涂层附着不均匀,烧结后涂层表面开裂、起皮、粗糙、掉粉严重。采用粒度级配的配比方案制备了氧化铝涂层,电镜分析表明,涂层致密,质量得到明显改善;与原有工艺相比,氧化铝涂层抗压能力提高了1倍。  相似文献   
967.
碳纳米管场发射平面显示器具有工作电压低、功耗低和制造成本低等优势,近年来基于碳纳米管场发射平面显示器的研究与应用研发已成为显示技术领域研究的热点之一,并已取得丰富成果。简要回顾了碳纳米管用于场发射的机理以及用于场发射平面显示器的优势,主要介绍了碳纳米管用于场发射平面显示器研究的一些进展和一些亟待解决的问题,包括碳纳米管阴极薄膜的制备、碳纳米管阴极工作稳定性与寿命的改进以及阴极结构的设计等,并展望了碳纳米管用于场发射平面显示器的发展前景。  相似文献   
968.
锂空气电池是一种高能量密度的清洁储能设备,其应用对于缓解能源危机和环境压力具有重要意义。当前,锂空气电池性能仍受到阳极锂腐蚀、电解质分解、充放电效率低的影响。本文结合国内外研究最新进展,从阳极锂保护、电解质及添加剂的使用、氧化还原中间体和多孔阴极结构等方面探讨改善锂空气电池稳定性、提高放电产物分解速度、降低充放电过电位的方法,并对锂空气电池的应用前景进行展望。  相似文献   
969.
Kim  A.-Young  Kim  Min Kyu  Kim  Ji Young  Wen  Yuren  Gu  Lin  Dao  Van-Duong  Choi  Ho-Suk  Byun  Dongjin  Lee  Joong Kee 《Nano Research》2017,10(6):2083-2095
Lithium-sulfur battery has become one of the most promising candidates for next generation batteries,and it is still restricted due to the low sulfur conductivity,large volume expansion and severe polysulfide shuttling.Herein,we present a novel hybrid electrode with a ternary nanomaterial based on sulfur-impregnated multiwalled carbon nanotubes filled with ordered tin-monoxide nanoparticles (MWCNT-SnO/S).Using a dry plasma reduction method,a mechanically robust material is prepared as a cathode host material for lithium-sulfur batteries.The MWCNT-SnO/S electrode exhibits high conductivity,good ability to capture polysulfides,and small volume change during a repeated charge-discharge process.In situ transmission electron microscopy and ultraviolet-visible absorption results indicate that the MWCNT-SnO host efficiently suppresses volume expansion during lithiation and reduces polysulfide dissolution into the electrolyte.Furthermore,the ordered SnO nanoparticles in the MWCNTs facilitate fast ion/electron transfer during the redox reactions by acting as connective links between the walls of the MWCNTs.The MWCNT-SnO/S cathode with a high sulfur content of 70 wt.% exhibits an initial discharge capacity of 1,682.4 mAh·g-1 at 167.5 mA·g-1 (0.1 C rate) and retains a capacity of 530.1 mAh·g-1 at 0.5 C after 1,000 cycles with nearly 100% Coulombic efficiency.Furthermore,the electrode exhibits the high capacity even at a high current rate of 20 C.  相似文献   
970.
作为新一代的储能体系,锂硫二次电池以高的理论能量密度(2 600 m Ah/g),廉价的正极材料以及环境友好等特点受到广泛的关注。但是,由于硫的绝缘性和充放电过程中体积的膨胀、锂硫之间复杂的电化学反应及其产物多硫化物的溶解性等诸多问题的存在,阻碍了锂硫二次电池走向商业化。本文从无机金属化合物与硫复合、导电高分子与硫复合、纳米碳及其衍生物与硫复合,以及三元复合等方面出发,综述了近年来锂硫电池正极材料的研究现状,并展望了该材料的未来发展趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号