首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   4篇
  国内免费   12篇
电工技术   2篇
综合类   3篇
化学工业   50篇
金属工艺   24篇
机械仪表   31篇
建筑科学   13篇
矿业工程   2篇
能源动力   11篇
轻工业   32篇
石油天然气   14篇
无线电   6篇
一般工业技术   130篇
冶金工业   7篇
原子能技术   10篇
自动化技术   29篇
  2023年   3篇
  2022年   7篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   13篇
  2016年   5篇
  2015年   5篇
  2014年   16篇
  2013年   17篇
  2012年   25篇
  2011年   30篇
  2010年   26篇
  2009年   38篇
  2008年   27篇
  2007年   19篇
  2006年   20篇
  2005年   12篇
  2004年   11篇
  2003年   14篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有364条查询结果,搜索用时 0 毫秒
91.
Masonry is a composite material composed of bricks and mortar disposed in a regular arrangement. It is commonly used as load bearing or partition walls in building structures. Owing to limitations of computer power, detailed distinctive modelling of brick and mortar of a realistic masonry structure or a structure with masonry infilled walls is usually not possible. Moreover, no dynamic masonry material model can be found in the open literature. Dynamic masonry material properties are important for an accurate prediction of masonry failure and fragmentation under dynamic loads. In this paper, a continuum damage model with strain rate effect is developed for masonry materials based on the homogenization method. The equivalent elastic properties, strength envelope and dynamic increase factors (DIFs) of strength and moduli for the homogenized masonry material are numerically derived from the simulated responses of a representative volume element (RVE). A numerical model of an RVE is analyzed with detailed distinctive modelling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The homogenized material model can be used to analyse large-scale masonry structures subjected to dynamic loading.  相似文献   
92.
We obtain general bounds on the torsional rigidity and give examples on how these bounds can be used to obtain estimates and simple formulae which yield more accurate information than the classical treatment. Moreover, we use the homogenization theory to estimate the limit of the torsional rigidity when the characteristic length of the composite microstructures decreases.  相似文献   
93.
The work is dedicated to the analysis of acoustical and optical branches of longitudinal elastic wave propagation in the medium with a random set of spherical inclusions. The effective field method and quasicrystalline approximation are used for the construction of the dispersion equation for the wave number of the mean (coherent) wave field propagating in the composite. This dispersion equation serves for all frequencies of the incident field, properties and volume concentrations of inclusions. Different branches of the solutions of this equation are obtained and analyzed. Each of these branches may be interpreted as a specific mode of wave propagation, and its input in the mean (coherent) wave field is essential only in a certain frequency region. The predictions of the method are compared with some experimental data existing in the literature.  相似文献   
94.
95.
Numerical experiments done on a two-dimensional stratified two-phase composite corroborate theoretical results on homogeneization of media capable of large deformations.  相似文献   
96.
A classical problem in lubrication theory is to predict the pressure distribution in a thin fluid film between two surfaces which are in relative motion. If one of the surfaces is rough, then the distance between the surfaces is rapidly oscillating. This leads to that the governing Reynolds partial differential equation involves rapidly oscillating coefficients. The branch in mathematics which considers such types of equations is known as homogenization. In this paper we study the effects of surface roughness for a special type of compressible fluid. In particular, we derive homogenization results connected to the friction force and the load carrying capacity.  相似文献   
97.
98.
A multiscale extended finite element method for crack propagation   总被引:1,自引:0,他引:1  
In this paper, we propose a multiscale strategy for crack propagation which enables one to use a refined mesh only in the crack’s vicinity where it is required. Two techniques are used in synergy: a multiscale strategy based on a domain decomposition method to account for the crack’s global and local effects efficiently, and a local enrichment technique (the X-FEM) to describe the geometry of the crack independently of the mesh. The focus of this study is the avoidance of meshing difficulties and the choice of an appropriate scale separation to make the strategy efficient. We show that the introduction of the crack’s discontinuity both on the microscale and on the macroscale is essential for the numerical scalability of the domain decomposition method to remain unaffected by the presence of a crack. Thus, the convergence rate of the iterative solver is the same throughout the crack’s propagation.  相似文献   
99.
The bounds of effective characteristics of random cell structures are obtained in terms of effective characteristics of periodic structures.  相似文献   
100.
The main aim is to present a homogenization algorithm for the multiscale heterogeneous (composite) materials, which is based on the wavelet representation of material properties and the relevant multiscale reduction. It is shown that classical homogenization method used before for two-scale composites (with micro and macro scales) is a special case of general multiresolutional strategy, where a single scale parameter tends to 0. The approach presented is applied to unidirectional wavelet-based homogenization of linear elasticity heterogeneous problem and to wave propagation, which may be applied in conjunction with various discrete numerical methods for efficient modeling of heterogeneous solids, fluids and multiphase media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号