首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8892篇
  免费   208篇
  国内免费   308篇
电工技术   71篇
综合类   278篇
化学工业   751篇
金属工艺   1742篇
机械仪表   2038篇
建筑科学   131篇
矿业工程   118篇
能源动力   231篇
轻工业   93篇
水利工程   30篇
石油天然气   57篇
武器工业   78篇
无线电   1253篇
一般工业技术   1688篇
冶金工业   177篇
原子能技术   136篇
自动化技术   536篇
  2024年   12篇
  2023年   98篇
  2022年   181篇
  2021年   207篇
  2020年   202篇
  2019年   147篇
  2018年   175篇
  2017年   207篇
  2016年   204篇
  2015年   229篇
  2014年   425篇
  2013年   437篇
  2012年   400篇
  2011年   596篇
  2010年   361篇
  2009年   430篇
  2008年   434篇
  2007年   512篇
  2006年   496篇
  2005年   458篇
  2004年   408篇
  2003年   365篇
  2002年   404篇
  2001年   263篇
  2000年   234篇
  1999年   243篇
  1998年   235篇
  1997年   222篇
  1996年   172篇
  1995年   127篇
  1994年   122篇
  1993年   116篇
  1992年   61篇
  1991年   52篇
  1990年   57篇
  1989年   35篇
  1988年   38篇
  1987年   13篇
  1986年   7篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有9408条查询结果,搜索用时 15 毫秒
141.
In this paper, a force model for self-propelled rotary tool is presented. Conventional oblique cutting force predictions were reviewed and extended to predict the cutting forces generated during machining with the self-propelled rotary tools. The model presented is based on Oxley's analysis and was verified by cutting tests using a typical self-propelled tool. Good agreement was obtained between the predicted and the experimentally measured forces under a wide range of cutting conditions. The effect of different cutting conditions on the friction coefficient along the chip/tool interface and tool rake face normal force were also presented and discussed.  相似文献   
142.
In this paper, an analytical approach is used to model the thermomechanical process of chip formation in a turning operation. In order to study the effects of the cutting edge geometry, it is important to analyse its global and local effects such as the chip flow direction, the cutting forces and the temperature distribution at the rake face. To take into account the real cutting edge geometry, the engaged part in cutting of the rounded nose is decomposed into a set of cutting edge elements. Thus each elementary chip produced by a straight cutting edge element, is obtained from an oblique cutting process. The fact that the local chip flow is imposed by the global chip movement is accounted for by considering appropriate interactions between adjacent chip elements. Consequently, a modified version of the oblique cutting model of Moufki et al. [Int. J. Mech. Sci. 42 (2000) 1205; Int. J. Mach. Tools Manufact. 44 (9) (2004) 971] is developed and applied to each cutting edge element in order to obtain the cutting forces and the temperature distributions along the rake face. The material characteristics such as strain rate sensitivity, strain hardening and thermal softening, the thermomechanical coupling and the inertia effects are taken into account in the modelling. The model can be used to predict the cutting forces, the global chip flow direction, the surface contact between chip and tool and the temperature distribution at the rake face which affects strongly the tool wear. Part II of this work consists in a parametric study where the effects of cutting conditions, cutting edge geometry, and friction at the tool–chip interface are investigated. The tendencies predicted by the model are also compared qualitatively with the experimental trends founded in the literature.  相似文献   
143.
MG and its alloys are widely used in aerospace andautomotive in industry.Its poor corrosion resistancerestricts application of Mg alloy.Laser cladding andlaser surface melting are advantageous processes forimprovement of the corrosion resistance of themagnesium alloy[1-2].In the present study,lasercladding of an Al-11.7Wt%Si alloy with two differentthickness on ZM5die cast alloy was performed withCC>2laser with different powder thickness.1.Experimental ProcedureDie cast plates of ZM5Mg a…  相似文献   
144.
In this research, an effective method for the form error prediction in side wall machining with a flat end mill is suggested. The form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. The developed model can predict the surface form error accurately about 300 times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.  相似文献   
145.
薄壁方管激光弯曲是一种利用激光加热来实现构件的柔性成形技术。研究了薄壁方管激光弯曲有限元模拟中的型处理、单元技术、边界条件、动热源构建、材料热吸收系数的选择、边界条件与初始条件等关键技术的处理,实现了薄壁方管激光弯曲过程的有限元模拟,分析了其变形机理。  相似文献   
146.
周磊  李宇飞 《机床与液压》2007,35(9):224-226,230
针对航空材料的表面强化问题,分析了激光表面处理技术在航空材料上应用的发展现状.论述了两种类型激光表面处理技术的基本原理和国内外研究现状.分析了激光表面处理技术在航空材料上应用的发展方向.  相似文献   
147.
CO2激光焊接不锈钢光致等离子体动态特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
光致等离子体是CO2激光焊接中一个重要的物理现象,它与焊接的稳定性、焊接质量及能量利用率等都有密切的关系。利用高速摄像及光信号监测两种手段对等离子体的动态变化过程及其对焊接稳定性的影响进行了深入的研究。提出了等离子体的变化每个周期内分为四个阶段,而影响焊接稳定性的根本原因是等离子体在穿透与未穿透之间的波动。  相似文献   
148.
Direct laser fabrication of thin-walled metal parts under open-loop control   总被引:2,自引:0,他引:2  
Direct laser fabrication (DLF) is an advanced manufacturing technology, which can build full density metal parts directly from CAD files without using any modules or tools. The investigation on the fabrication of thin-walled parts of nickel alloy using open-loop DLF process is introduced in this paper. The experimental setup consisted of a CO2 laser, a 3-axis CNC table, a coaxial powder nozzle and a powder recycler. The 3D-CAD file of a thin-walled metal part was converted into the STL file format and imported into software HUST-RP to generate ‘pseudo-random’ scanning paths of laser beam. The influence of process parameters on the build height of thin-walled metal parts was studied by 1–10 layered single-bead stacks of nickel alloy. The result shows that the interference factors which affect the build height of thin-walled metal parts occur randomly during the process. For open-loop DLF process, thin-walled metal parts can achieve much better shape quality if the process parameters are suitable. Multilayer single-bead walls were built up with different scanning velocity to obtain the optimal process parameters of thin-walled parts of nickel alloy. It shows that thin walls of nickel alloy with uniform height can be built up layer by layer in a certain range of specific energy. However, it is difficult to control the build height of complex thin-walled metal parts in an accurate manner just using optimal parameters. A special coaxial powder nozzle was designed in this paper. In a certain range, the deposition thickness of the nozzle is nearly linearly increased with increase in the standoff distance between the powder focusing point of the nozzle and the deposition substrate. By means of the nozzle, a novel method to control the build height of thin-walled metal parts using open-loop DLF process was introduced. The difference in build height of a thin-walled part can be compensated automatically in one or several layers during the process. It is proved that the build height of a thin-walled metal part can be accurately controlled in theory using the nozzle. A complex single-bead part of nickel alloy whose geometry was designed to be the well-known Chinese ‘FU’ was fabricated and explained in this paper. The result shows that the shape quality of the sample is quite good, and actual build height of the sample is 53.54 mm while the designed value is 54 mm.  相似文献   
149.
In Part I of this work, Molinari and Moufki [Int. J. Mach. Tools Manufact., this issue], an analytical model of three-dimensional cutting is developed for turning processes. To analyse the influences of cutting edge geometry on the chip formation process, global effects such as the chip flow direction and the cutting forces, and local effects such as the temperature distribution and the surface contact at the rake face have been investigated. In order to accede to local parameters, the engaged part in cutting of the rounded nose is decomposed into a set of cutting edge elements. Thus each elementary chip, produced by a straight cutting edge element, is obtained from an oblique cutting process defined by the corresponding undeformed chip section and the local cutting angles. The present approach takes into account the fact that for each cutting edge element the local chip flow is imposed by the global chip movement. The material characteristics such as strain rate sensitivity, strain hardening and thermal softening, the thermomechanical coupling and the inertia effects are considered in the modelling. A detailed parametric study is provided in this paper in order to analyse the effects of cutting speed, depth of cut, feed, nose radius and cutting angles on cutting forces, global chip flow direction and temperature distribution at the rake face. The influence of friction at the tool–chip interface is also discussed.  相似文献   
150.
Micro-end-milling of single-crystal silicon   总被引:1,自引:0,他引:1  
Ductile-regime machining of silicon using micro-end-mill is almost impossible because of the brittle properties of silicon, crystal orientation effects, edge radius of the cutter and the hardness of tool materials. Micro-end-milling can potentially be used to create desired three dimensional (3D) free form surface features using the ductile machining technology for single-crystal silicon. There is still a lack of fundamental understanding of micro-end-milling of single-crystal silicon using diamond-coated tool, specifically basic understanding of material removal mechanism, cutting forces and machined surface integrity in micro-scale machining of silicon. In this paper, further research to understand the chip formation mechanism was conducted. An analysis was performed to discover how the chips are removed during the milling process. Brittle and ductile cutting regimes corresponding to machined surfaces and chips are discussed. Experiments have shown that single-crystal silicon can be ductile machined using micro-end-milling process. Forces generated when micro-end-milling single-crystal silicon are used to determine the performance of the milling process. Experimental results show that the dependence of the cutting force on the uncut chip thickness can be well described by a polynomial function order n. As cutting regime becomes more brittle, the cutting force has more complex function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号