首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4508篇
  免费   37篇
  国内免费   133篇
电工技术   15篇
综合类   54篇
化学工业   1814篇
金属工艺   169篇
机械仪表   114篇
建筑科学   78篇
矿业工程   27篇
能源动力   847篇
轻工业   43篇
水利工程   4篇
石油天然气   86篇
武器工业   10篇
无线电   355篇
一般工业技术   773篇
冶金工业   151篇
原子能技术   47篇
自动化技术   91篇
  2024年   7篇
  2023年   77篇
  2022年   129篇
  2021年   144篇
  2020年   141篇
  2019年   134篇
  2018年   147篇
  2017年   137篇
  2016年   98篇
  2015年   82篇
  2014年   214篇
  2013年   281篇
  2012年   222篇
  2011年   439篇
  2010年   263篇
  2009年   275篇
  2008年   277篇
  2007年   266篇
  2006年   256篇
  2005年   197篇
  2004年   164篇
  2003年   178篇
  2002年   142篇
  2001年   69篇
  2000年   63篇
  1999年   36篇
  1998年   44篇
  1997年   48篇
  1996年   23篇
  1995年   28篇
  1994年   20篇
  1993年   20篇
  1992年   14篇
  1991年   3篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   7篇
  1984年   2篇
  1980年   1篇
排序方式: 共有4678条查询结果,搜索用时 390 毫秒
131.
132.
In this work, a deep learning accelerated homogenization framework is developed for prediction of elastic modulus of porous materials directly from their inner microstructures. The finite element method (FEM) and the homogenization theory are used to obtain the macroscopic properties of materials based on their microstructures. Based on a large dataset consisting of various microstructures and corresponding elastic properties via FEM, a deep convolutional neural network (CNN) is trained to capture the nonlinear functional relationship between the microstructure features and their macroscopic elastic properties. The deep learning model is finally well validated against extra new samples with excellent predictive performances. This demonstrates that the CNN deep learning model can be trusted as a surrogate model for the FEM based homogenization method, with the computation time being reduced by several orders of magnitude. The proposed deep learning framework is highly extendable for prediction of various macroscopic properties from microstructures.  相似文献   
133.
A new rapid and facile strategy for the preparation of Pd-Ni/G and Pd-Cu/G catalysts with a three-dimensional porous structure are presented in this paper. Both catalysts are formed using the same strategies in two steps: 1) The reduction of Ni(OH)2 and Cu(OH)2 to the metallic form on the surface of G/GC Electrode using the Zn/HCl reducer, 2) The galvanic displacement of Ni and Cu by Pd2+. Afterwards, three-dimensional Pd nanonetwork is generated on the glassy carbon electrode via the galvanic displacement. Compared to the other routes, this strategy depicts several advantages (e.g. fast way, facile, surfactant and reductant free, cheap, and eco-friendly.) Both catalysts are applied towards Ethanol Oxidation Reaction (EOR). Both porous structures show higher electrocatalytic activity and stability toward EOR compared to the commercial Pd/C. The extraordinary catalytic activity and durability of the both proposed catalysts for EOR can be related to the two vital reasons:1) The combination of Ni and Cu with Pd will efficiently promote the catalytic performance of Pd-Ni/G and Pd-Cu/G samples due to synergetic effects. 2) The porous structure of the as-prepared catalysts renders a high surface area and leads easier mass transport through the pores.  相似文献   
134.
ABSTRACT: Multifunctional porous Si nanostructure is designed to optically monitor enzymatic activity of Horseradish Peroxidase. First, an oxidized PSi optical nanostructure, a Fabry-Perot thin film, is synthesized and is used as the optical transducer element. Immobilization of the enzyme onto the nanostructure is performed through DNA-Directed Immobilization. Preliminary studies demonstrate high enzymatic activity levels of the immobilized Horseradish Peroxidase, while maintaining its specificity. The catalytic activity of the enzymes immobilized within the porous nanostructure is monitored in real time by reflective interferometric Fourier transform spectroscopy. We show that we can easily regenerate the surface for consecutive biosensing analysis by mild de-hybridization conditions.  相似文献   
135.
Hydrogen as a secondary energy carrier promises a large potential as a long term storage for fluctuating renewable energies. In this sense a highly efficient solar hydrogen generation is of great interest especially in southern countries having high solar irradiation. The patented Hydrogen Concentrator (HyCon) concept yields high efficiencies combining multi-junction solar cells with proton exchange (PEM) membrane water electrolysis. In this work, a special PEM electrolysis cell for the HyCon concept was developed and investigated. It is shown that the purpose-made PEM cell shows a high performance using a titanium hybrid fiber sinter function both as a porous transport layer and flow field. The electrolysis cell shows a high performance with 1.83 V at 1 A/cm2 and 24 °C working under natural convection with a commercially available catalyst coated membrane. A theoretical examination predicts a total efficiency for the HyCon module from sunlight to hydrogen of approximately 19.5% according to the higher heating value.  相似文献   
136.
This study aims to evaluate the convective heat transfer enhancement of the proton exchange membrane fuel cells (PEMFC) numerically. As the higher heat transfer surfaces lead to higher heat transfer rates, a flat plate porous layer is utilized in the gas flow channel (GFC). This enhancement in heat transfer stems from the corresponding modification in the temperature and velocity profiles. The influencing parameters on these profiles are the thickness, permeability, and porosity of the GFC porous layer. After performing the simulations, the results indicate that convective heat transfer has a direct relationship with GFC porous layer's thickness and permeability. However, lower values of porosity lead to the higher Nusselt numbers. Previous investigations have also mentioned the positive impact of the microporous layer (MPL) on the water management of these fuel cells. Therefore, six different sizes of MPL and the gas diffusion layer (GDL) are utilized to evaluate their impacts on the thermal management. Results indicate that although these sizes have negligible effects on the heat transfer, Nu increases by enhancing the total size of MPL and GDL. The results also show that thicker MPLs lead to higher heat transfer rates. The evaluation of the friction factor also indicates the adverse effect of the GFC porous layer, although this undesirable effect is negligible. Finally, all the simulated values are utilized to train an artificial neural network (ANN) model with high precision. This ANN model can produce more data for sensitivity analysis and presenting respective 3D diagrams of the influencing parameters on heat transfer.  相似文献   
137.
In this paper, an additive manufacturing prepared porous stainless steel felt (AM-PSSF) is proposed as a novel catalyst support for hydrogen production via methanol steam reforming (MSR). In the method, 316 L stainless steel powder with diameter of 15–63 μm is processed by the additive manufacturing technology of selective laser melting (SLM). To accomplish the preparation, the reforming chamber where the AM-PSSF is embedded is firstly divided into an all-hexahedron mesh. Then, the triply periodic minimal surface (TPMS) unit with mathematical form, high interconnectivity and large specific surface area is mapped into the hexahedrons based on shape function, forming the fully connected three-dimensional (3D) micro pore structure of the AM-PSSF. By correlating the mathematical parameter and the porosity of the TPMS unit, and taking into account the SLM process, the porosity of the AM-PSSF is well controlled. Based on the designed 3D pore structure model, the AM-PSSF is produced using standard SLM process. The application of the AM-PSSF as catalyst support for hydrogen production through MSR indicates that: 1) both the naked and catalyst-coated AM-PSSF have the characteristics of high porosity, large specific surface area and high connectivity; 2) the MSR hydrogen production performance of the AM-PSSF is better than that of the commercial stainless steel fiber sintered felt. The feasibility of AM-PSSF as catalyst support for MSR hydrogen production may pave a better way to balance different requirements for catalyst support, thanks to the excellent controllability provided by AM on both the external shape and the internal pore structure, and to the produced rough surface morphology that benefits the catalyst adhesion strength. In addition, catalyst support with pore structures that are more accommodated with the flow field and the reaction rate of MSR reaction may be prepared in future, since the entire catalyst support structure, from macro scale to micro scale, is under control.  相似文献   
138.
To split water and produce hydrogen by white light is an excellent solution for the storage and supply of clean and sustainable energy. Efficiency and stability are the key challenges for a successful exploitation. InGaN, evaluated against other semiconductors, metal oxides, carbon based - and organic materials has most suited intrinsic materials properties. Based on this optimum materials choice we report photoelectrochemical (PEC) hydrogen generation under white light illumination by an InGaN-based quantum nanostructure photoelectrode. No degradation occurs for operation over 10 h. Our novel concept, combining quantum nanostructure physics with electrochemistry and catalysis leads to almost 10% efficiency at zero external voltage. The efficiency rises above 25% at 0.2 V. This is unmatched for a single photoelectrode, representing the most advanced technology of low complexity.  相似文献   
139.
Carbon materials have been demonstrated as excellent carriers for preparing supported metal nanocatalysts in catalytic applications. However, numerous chemical activators including strong acids and bases were applied, leading to the entire process dangerous and hazardous. Eco-friendly, economic, and convenient synthesis of carbon materials with desired properties as supports for metal nanoparticle (NP) stabilization to boost performance is important but remains challenging. Here, we developed a facile and eco-friendly strategy to synthesize porous carbon nanosheets (PCNs) with ultrahigh specific surface area (2575.1 m2/g) via pyrolysis the mixture of potassium oxalate and glucose. The resultant PCNs can be used as ideal platform for in-situ distribution of small Rh NPs (Rh/PCNs) as efficient catalysts in hydrogen production from ammonia borane (AB) under ambient conditions. Specifically, Rh/PCNs displayed high activity for AB hydrolysis, with a turnover frequency (TOF) of 513.2 min−1. Small and well-distributed Rh NPs on PCNs with large catalytically active surface atoms are contributed to the high catalytic property of Rh/PCNs for the reaction. Present study has demonstrated that the PCNs is a superior catalyst support for preparing a series of metal NPs in other catalytic applications beyond hydrolysis reaction.  相似文献   
140.
Cold Sintering Process (CSP) was applied on commercial nanopowders to produce nanostructured TiO2 anatase with nano-to-macro porosity. Nanoporous TiO2 based materials were obtained by applying CSP at 150 °C and pressures up to 500 MPa on three TiO2 nanopowders with different specific surface area (s.s.a. = 50, 90 and 370 m2/g), using water as transient aqueous environment. Although TiO2 is insoluble in water, a density of 68% and s.s.a. = 117 m2/g were achieved from the powder with the highest specific surface area. A post annealing process at 500 °C increased the density up to 73% with a s.s.a. = 59 m2/g, and the crystallites dimensions passed from 110 Å in the powder to 130 Å in CSP material and 172 Å after post annealing. Finally, macroporosity was produced by using thermoplastic polymer beads as sacrificial templates within TiO2 nanopowder during CSP, followed by a debonding at 500 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号