首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29920篇
  免费   1217篇
  国内免费   776篇
电工技术   846篇
综合类   1105篇
化学工业   5836篇
金属工艺   5111篇
机械仪表   1060篇
建筑科学   997篇
矿业工程   328篇
能源动力   441篇
轻工业   1773篇
水利工程   125篇
石油天然气   461篇
武器工业   130篇
无线电   2419篇
一般工业技术   7557篇
冶金工业   877篇
原子能技术   391篇
自动化技术   2456篇
  2024年   36篇
  2023年   188篇
  2022年   518篇
  2021年   681篇
  2020年   465篇
  2019年   406篇
  2018年   446篇
  2017年   579篇
  2016年   964篇
  2015年   1591篇
  2014年   1772篇
  2013年   1827篇
  2012年   1713篇
  2011年   3058篇
  2010年   2404篇
  2009年   2325篇
  2008年   1900篇
  2007年   1816篇
  2006年   1305篇
  2005年   1299篇
  2004年   1272篇
  2003年   1319篇
  2002年   1191篇
  2001年   502篇
  2000年   393篇
  1999年   397篇
  1998年   285篇
  1997年   236篇
  1996年   177篇
  1995年   141篇
  1994年   114篇
  1993年   76篇
  1992年   71篇
  1991年   47篇
  1990年   39篇
  1989年   36篇
  1988年   33篇
  1987年   21篇
  1986年   27篇
  1985年   24篇
  1984年   26篇
  1983年   15篇
  1982年   23篇
  1981年   33篇
  1980年   72篇
  1979年   8篇
  1978年   10篇
  1977年   8篇
  1975年   6篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
41.
Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene’s macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π–π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π–π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV–vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.  相似文献   
42.
43.
The Externally Bonded Reinforcement (EBR) technique using Carbon Fiber-Reinforced Polymers (CFRP) has been commonly used to strengthen concrete structures in flexure. The use of prestressed CFRP material offers several advantages well-reported in the literature. Regardless of such as benefits, several studies on different topics are missing. The present work intends to contribute to the knowledge of two commercially available systems that differ on the type of anchorage: (i) the Mechanical Anchorage (MA), and (ii) the Gradient Anchorage (GA). For that purpose, an experimental program was carried out with twelve slabs monotonically tested under displacement control up to failure by using a four-point bending test configuration. The effect of type of anchorage system (MA and GA), prestrain level (0 and 0.4%), width (50 mm and 80 mm) and thickness (1.2 mm and 1.4 mm) of the CFRP laminate, and the surface preparation (grinded and sandblasted) on the flexural response were the main studied parameters. Better performance was observed for the slabs: (i) with prestressed laminates, (ii) for the MA system, and (iii) with sandblasted surface preparation.  相似文献   
44.
The paper proposes a limit analysis approach to define the ultimate load capacity of orthotropic composite laminates under biaxial loading and plane stress conditions. A lower bound to the collapse load multiplier is computed by solving a maximization nonlinear problem, according to the static theorem of limit analysis. To set up the optimization problem a stress field distribution is hypothesized at lamina level, moreover inter-lamina stresses are also considered. The effectiveness and validity of the proposed approach is shown by comparing the obtained numerical predictions both with available experimental data and with other numerical results carried out by means of a different numerical lower bound approach.  相似文献   
45.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   
46.
This paper presents an experimental study of low velocity impact response of carbon/epoxy asymmetrically tapered laminates. The tests are realised at energy between 10 and 30 J on two types of layup with multiple terminated plies. The type and localisation of damage are analysed using C-scan and micrographs. Then, the data is compared with the response of corresponding respective plain laminate. The effects of some tapering parameters (taper angle, drop-off disposition and configuration) on the impact damage mechanisms are also investigated. Very similar impact damage phenomena are found between tapered and plain laminates. The presence of material discontinuity due to the resin pocket affects less the damage mechanism than the structural difference between the thick and the thin sections.  相似文献   
47.
In this paper, novel morphology correlation between silver nanowires (AgNWs) and cobalt (Co)-doped ZnO (Co-ZnO) flake-like thin films (nanowire/flake-like) has been proposed for enhanced photoelectrochemical (PEC) water splitting activity. Here in, high-quality AgNWs/Co-ZnO heterostructures enabled superior visible light water splitting activity compared to the pure ZnO and AgNWs/ZnO. To address the strategic effect of AgNWs coupling and transition metal (Co-2?at%) doping into the ZnO host lattice, we have carried out the X-ray diffraction, field emission scanning microscopy, X-ray photoelectron spectroscopy, UV–Vis transmittance, water contact angle and PEC analyses. In this way, PEC water splitting activity was mainly examined by linear sweep voltammetry (I-V), amperometric I-t and photoconversion efficiency (η) studies. The experimental results provide clear evidence of morphology correlation between AgNWs and Co-ZnO flake-like structures for strong visible light absorption. Specifically, AgNWs/Co-ZnO composites exhibited significant enhancement in the photocurrent density (7.0?×?10?4 A/cm2) than AgNWs/ZnO (3.2?×?10?4 A/cm2) and pure ZnO (1.5?×?10?6 A/cm2). As a result, detailed AgNWs/Co-ZnO geometry has great potential for photoconversion efficiency (0.73%). In a word, the merits of controllable AgNWs/Co-ZnO heterostructure are proposed to improve the visible light harvesting and charge carrier generation for energy conversion devices.  相似文献   
48.
The main aim of this work is dual computer analysis of probabilistic coefficients for the homogenized tensor of the polymer filled with the rubber particles having randomized Poisson ratios of both constituents. The major issue is to verify an influence of a randomness in rubber Poisson ratio close to the compressibility limit on the uncertainty of the effective tensor probabilistic characteristics. Probabilistic analysis presented here is carried out using mainly the stochastic perturbation technique provided by the common application of the traditional FEM commercial code ABAQUS and the symbolic computations package MAPLE. This FEM-based technique employs polynomial response function of the optimum order recovered from the weighted least squares method and following a set of deterministic solutions obtained for various values of the randomized input parameter. Optimization procedure is released entirely into a symbolic environment, where maximization of the correlation factor together with minimization of the fitting variance and approximation error are applied. Homogenization technique consists in equating of deformation energies for the real composite and the artificial one characterized by the effective elasticity tensor with uncertainty.  相似文献   
49.
In this study, further analysis of the osmotic drying process was conducted to identify the optimum combination of parameters for drying rectangular alumina-gelatin beams. This study was designed to determine the effect of three variables related to the osmotic drying process (osmotic pressure, molecular weight, and immersion time) on the interaction between the liquid desiccant and the submerged alumina-gelatin samples. The water loss from the alumina-gelatin samples was positively correlated with the molecular weight, osmotic pressure, and immersion time. Up to 40% by weight of the initial water content was removed during the osmotic drying process. The samples also experienced solids gain due to the counterflow of solute from the liquid desiccant. The least amount of solids gain resulted from drying for the shortest immersion time at low osmotic pressure and high molecular weight. Evidence of possible interactions between variables was noted for the sintered density metric. Statistical methods were used to form regression equations for the measured responses (water loss, solids gain, bulk density). A verification experiment was conducted to compare the experimental outcomes to the predicted outcomes. The responses were simultaneously optimized to identify the combination of variable settings required to meet specified goals. In order to maximize water loss, minimize solids gain, and maximize bulk density, the ceramic-gelatin object should be immersed for approximately 60?min in an aqueous solution of 100,000?g/mol poly(ethylene oxide) at an osmotic pressure of 2.50?MPa. These values are valid for the range of parameter settings tested and the sample fabrication and drying methods used.  相似文献   
50.
The lead-free piezoelectric ceramics (Na.47Bi.47Ba.06)1-xCaxTiO3 (x?=?0, 0.01, 0.02, 0.03, 0.05, and 0.08, abbreviated as BNBTC/0, BNBTC/1, BNBTC/2, BNBTC/3, BNBTC/5, and BNBTC/8, respectively) were obtained using the solid-state reaction method. The structure, electric conductivity, and dielectric, ferroelectric, and piezoelectric properties of the Ca2+-doped (Na.47Bi.47Ba.06)TiO3 ceramics were thoroughly investigated. The ceramics sintered at 1200?°C exhibit dense microstructures, having relative densities higher than 96%. The X-ray diffraction results demonstrate that all ceramics have a pure perovskite structure. The mean grain sizes of the ceramics are related to the Ca2+ quantity. A small quantity of Ca2+ ions (x?≤?0.03) improves the piezoelectric and ferroelectric properties of the samples. The dielectric behavior of the samples is sensitive to the Ca2+ content and electric poling. The results demonstrate that the electrical properties of the (Na.47Bi.47Ba.06)TiO3 lead-free ceramics can be well tuned by varying the Ca2+ quantity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号