排序方式: 共有138条查询结果,搜索用时 0 毫秒
1.
为了满足喷涂机器人对于喷涂质量检测的需求,采用迁移学习对改进 Padim 建模和 ResNet 网络进行融合,构建自主喷
涂机器人喷涂质量检测一体化模型。 该模型提取一次图像特征可同时用于缺陷定位和分类。 在缺陷定位端,通过改进 Padim
模型以减少特征冗余所造成网络的计算消耗,首先将 ResNet-18 网络获取的 patch 嵌入向量语义层由原先前 3 层改为单 2 层,然
后特征表达由 100 维降维至 20 维,最后训练正样本得到正态分布模型与测试图像进行缺陷定位。 在缺陷分类端,对预训练
ResNet-18 网络进行负样本二次训练,得到 ResNet-18 分类模型对测试图像进行缺陷分类。 经过实验,将一体化模型移植在
jetson nano 移动端中,参数量仅为 11. 69 M,定位精度 94. 5%,分类准确率高达 99. 6%,在机器人位移速度 0. 02 m/ s 下检测时间
为 0. 730 s,不会出现缺帧漏检情况,满足实时检测的要求。 相似文献
2.
为了提高手势动作在类别众多且相似度高的情况下的识别精度,提出了一种基于连续小波变换和残差神经网络Res- Net50的表面肌电信号手势识别方法。首先对Ninapro DB2 和 DB3 的原始表面肌电信号进行预处理和连续小波变换,得到 Multi-sEMG Wavelet Map 数据集,然后送入改进的ResNet50模型进行识别分类。实验结果表明,改进后的ResNet50 网络模 型在 Multi-sEMG Wavelet Map DB2 和 DB3中17种手势动作的平均准确率分别达到了96.40%和94.11%,相比 ResNet50 网络模型方法提升了4.87%和5.83%。实现了手势动作在类别繁多、相似度较高的情况下的精准识别。为基于非侵入式传 感器和机器学习控制的假肢手提供了新方案。 相似文献
3.
《电子技术与软件工程》2019,(19)
情绪检测技术正逐渐应用到检测机械员工损伤、视频游戏用户体验、协助医护人员评估患者健康等各行各业,围绕它的领域都在持续增长。本篇论文中,为更好地识别AFEW数据集中视频片段包含的情绪信息,我们加入语义模态,与表情模态、语音模态模态进行融合。表情模态使用Resnet模型,语音模态使用VGG19模型,语义模态使用TextCNN模型,并设计后期融合策略对三种模态的检测结果进行融合,提高了准确率。 相似文献
4.
岩石薄片图像的分析往往依赖于专业人员在显微镜下观察并给出鉴定结果,不但费时费力,并且受设备限制影响较大。近些年,针对于薄片图像的自动识别方法已经被提出,然而这些方法大多采用监督学习与深度学习相结合的方式,进而受限于大量人工标注,为方法的推广与应用带来了巨大困难。此外模型在不同的地层、岩性等目标应用时,其泛化性也因此受到极大限制。本文针对该问题提出了一种超像素算法SLIC与半监督自训练结合的方法,仅依靠6%的人工标注便能够实现岩石图像的自动化分割与组分识别,极大的增强该方法在实际应用中的价值。该方法首先使用超像素算法SLIC对岩石图像进行预分割,随后基于分割片的颜色特征进行粗合并,并根据最小外接矩形进行切割;切割下来的岩石组分分割图像作为后续处理的基础数据集,这里仅需要人工标注6%的岩石组分数据;随后这些数据通过一个改进的半监督自训练方法,以改进的VGG16模型作为主模型、ResNet18模型作为评判模型,不断生成高置信度的伪标签,利用迭代优化调整,将其扩展到整个数据集,最终获得一个具有较高的稳定性、准确性以及一致性的组分识别模型。通过实际数据的测试与分析,本文所提出SLIC和半监督自训练结合的方法,对6类岩石组分的识别准确率可达到96%。该方法能够在数据差异不大的条件下,帮助用户基本实现自动化的组分识别。而当数据集产生较大差异时,仅需标注少量部分样品即可实现自动的组分识别。通过理论验证与实际数据测试,本方法具有较高的泛化性和可靠性,能够在实际应用提供足够的准确性与便利性。 相似文献
5.
针对传统疲劳驾驶检测方法识别准确率低、泛化能力差的问题,提出了一种基于CNNs和LSTM的端到端可训练网络,检测驾驶员的疲劳状态。根据驾驶员面部特征点提取ROI,将在其他计算机视觉任务上表现较好的深度网络迁移到疲劳检测任务中,并结合LSTM处理时序数据的能力,提出一种新的疲劳检测网络,该网络能够读入视频流中的时序数据并检测出驾驶员的疲劳状态。实验证明所提方法和模型在公开数据集中具有较高的识别准确率,并且在不同的数据集间具有很好的泛化能力,对于减少路面车祸、保障人身安全具有很重要的意义。 相似文献
6.
深度学习的语义分割在计算机视觉领域中有非常广阔的发展前景,但许多分割效果较好网络模型占用内存大和处理单张图片耗时长.针对这个问题,把Deeplab V3+模型的骨干网(ResNet101)的瓶颈单元设计为1D非瓶颈单元,且对空洞空间金字塔池化模块(Atrous Spatial Pyramid Pooling, ASPP)的卷积层进行分解.该算法能大幅度降低Deeplab V3+网络的参数量,提高网络推理速度.基于PASCAL VOC 2012数据集进行对比实验,实验结果显示改进网络模型拥有更快的处理速度和更优的分割效果,且消耗更少的内存. 相似文献
7.
在大型工业厂房中,由于设备控制开关种类繁多、数量庞大,在日常的运维过程中,操作规程的繁杂性和人为判断的主观性可能导致操作失误,造成严重后果.为辅助操作人员准确判断设备开关状态是否正确,提出了面向设备开关状态识别的改进Faster R-CNN.首先,使用膨胀残差网络作为特征提取网络,在ResNet50中引入多分支膨胀卷积,融合不同感受野的信息;其次,改进特征金字塔网络,在原网络上增加一条自底向上的特征增强分支,融合多尺度的特征信息;然后,使用K-means++算法对开关边界框聚类,设计适合设备开关的候选框尺寸;最后,使用Soft-NMS代替非极大值抑制算法NMS来降低开关重叠对检测效果的影响,增强抑制重叠候选框的能力.在开关状态数据集上,改进Faster R-CNN的均值平均精度(mAP)达到了91.5%,并且已实际应用于抽水蓄能电站日常运维的设备开关状态辅助识别,满足复杂场景下的智能监管需求. 相似文献
8.
针对人工巡检及传统视频监测方式不能及时识别输电线路外破隐患的问题, 本文提出基于YOLOv4的输电线路外破隐患识别算法. 该算法采用改进K-means算法对图片样本集目标的大小进行聚类分析, 筛选出符合检测目标特征的锚框, 之后利用CSPDarknet-53残差网络提取图片深层次网络特征数据, 并采用SPP算法对特征图进行处理增加感受野, 提取更高层次的语义特征. 最后结合实际的输电线路现场监控图片, 测试结果表明该算法能够及时准确检测到外破隐患. 相似文献
9.
青光眼是一种不可逆转的致盲性眼科疾病,应当早发现和早治疗.但人工诊断是费时费力的过程,而且受基层医疗资源的限制,人工诊断很容易产生漏诊和误诊的现象.因此,利用深度学习技术辅助诊断眼疾病具有重大意义.如何更为准确且有效地分割视网膜血管成为眼疾病辅助诊断的研究热点问题.于是,基于U型网络(U-Net)提出一种新的网络结构称... 相似文献
10.
针对细粒度车型中子车系间识别率低的问题,同时为了增强卷积神经网络的表征能力,提出融合独立组件的残差网络(IC-ResNet)模型.优化ResNet网络,通过改进下采样层,减少特征信息损失,接着使用中心损失函数和Softmax损失函数联合学习策略,增强模型的类内聚性.在卷积层前引入独立组件(IC)层,获得相对独立的神经元... 相似文献