首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28346篇
  免费   1388篇
  国内免费   894篇
电工技术   970篇
综合类   851篇
化学工业   8342篇
金属工艺   2459篇
机械仪表   1031篇
建筑科学   1526篇
矿业工程   284篇
能源动力   3498篇
轻工业   1059篇
水利工程   191篇
石油天然气   737篇
武器工业   146篇
无线电   1590篇
一般工业技术   5805篇
冶金工业   1027篇
原子能技术   486篇
自动化技术   626篇
  2024年   61篇
  2023年   646篇
  2022年   802篇
  2021年   927篇
  2020年   912篇
  2019年   914篇
  2018年   874篇
  2017年   972篇
  2016年   868篇
  2015年   947篇
  2014年   1465篇
  2013年   2030篇
  2012年   1442篇
  2011年   2334篇
  2010年   1599篇
  2009年   1708篇
  2008年   1589篇
  2007年   1596篇
  2006年   1327篇
  2005年   1179篇
  2004年   997篇
  2003年   840篇
  2002年   674篇
  2001年   509篇
  2000年   487篇
  1999年   452篇
  1998年   445篇
  1997年   356篇
  1996年   284篇
  1995年   252篇
  1994年   192篇
  1993年   134篇
  1992年   125篇
  1991年   129篇
  1990年   97篇
  1989年   93篇
  1988年   70篇
  1987年   48篇
  1986年   49篇
  1985年   43篇
  1984年   34篇
  1983年   28篇
  1982年   37篇
  1981年   25篇
  1980年   17篇
  1979年   8篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
13.
This paper reports an investigation on the structure-properties correlation of trivalent metal oxide (Al2O3)-doped V2O5 ceramics synthesized by the melt-quench technique. XRD patterns confirmed a single orthorhombic V2O5 phase formation with increasing strain on the doping of Al2O3 in place of V2O5 in the samples estimated by Williamson-Hall analysis. FTIR and Raman investigations revealed a structural change as [VO5] polyhedra converts into [VO4] polyhedra on the doping of Al2O3 into V2O5. The optical band gap was found in a wide semiconductor range as confirmed by UV–visible spectroscopy analysis. The thermal and conductivity behavior of the prepared samples were studied using thermal gravimetric analysis (TGA) and impedance analyzer, respectively. All the prepared ceramics exhibit good DC conductivity (0.22–0.36 Sm-1) at 400 ?C. These materials can be considered for intermediate temperature solid oxide fuel cell (IT-SOFC)/battery applications due to their good conductivity and good thermal stability.  相似文献   
14.
《Ceramics International》2022,48(8):10733-10740
Multivalent ion-conducting ceramics are required for the manufacture of high-safety, high-capacity rechargeable batteries. However, the low ionic conductivity of solid electrolytes and discrepancies in the thermal expansion between the battery components limit their widespread application. Furthermore, anisotropic thermal expansion in crystals during battery manufacturing and the charge-discharge cycles causes the formation of microcracks, which degrade the battery performance. The physical properties of ceramic materials with anisotropic crystal structures can be modified by varying the crystallographic orientation of their grains. In this study, a co-precipitation approach was used to synthesize an Mg2+-conducting (Mg0.1Hf0.9)4/3.8Nb(PO4)3 solid electrolyte, and the grain orientation in the bulk sample was controlled using strong magnetic fields during the slip casting process. The results showed that inducing an orientation along the c-axis enhanced the apparent ionic conductivity of the bulk sample. It was also observed that (Mg0.1Hf0.9)4/3.8Nb(PO4)3 crystal has a negative volumetric thermal expansion despite a positive linear thermal expansion along its c-axis. By adjusting the c-axis orientation of the grains, (Mg0.1Hf0.9)4/3.8Nb(PO4)3 electrolytes with negative or positive linear thermal expansion coefficient have been produced. The findings of this study suggest that solid-electrolytes with negative, positive, or zero linear thermal expansion can be produced to create more compatible and higher-performance solid-state devices.  相似文献   
15.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
16.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
17.
Three-dimensional Bödewadt flow (fluid rotates at a large enough distance from the stationary plate) of carbon nanomaterial is examined. Single walled and multi walled CNTs are dissolved in water and gasoline oil baseliquids. Darcy-Forchheimer porous medium is considered. Stationary disk is further stretched linearly in radial direction. Heat transfer effect is examined in presence of radiation and convection. Effect of viscous dissipation is accounted. Entropy generation rate is studied. By using adequate transformation (von Kármán relations), the flow field equations (PDEs) are transmitted into ODEs. Solutions to these ODEs are constructed via implementation of shooting method (bvp4c). In addition to Entropy generation rate, Bejan number, heat transfer rate (Nusselt number), skin friction and temperature of fluid are examined through involved physical parameters. Axial component of velocity intensifies with increment in nanoparticles volume fraction and ratio of stretching rate to angular velocity parameter while it decays with higher porosity parameter. Higher nanoparticles volume fraction and porosity parameter lead to decay in radial as well as tangential component of velocity. However it enhances with higher ratio of stretching rate to angular velocity parameter. Temperature of fluid directly varies with higher ratio of stretching rate to angular velocity parameter, radiation parameter, Eckert number, Biot number and nanoparticles volume fraction. Rate of Entropy generation is reduced with higher estimations of porosity parameter, nanoparticles volume fraction and radiation parameter. Skin friction coefficient decays with higher porosity parameter and ratio of stretching rate to angular velocity parameter. Intensification in porosity parameter, nanoparticles volume fraction and Biot number leads to higher Nusselt number. Prominent impact is shown by multiple-walled CNTs with gasoline oil basefluid than single-walled CNTs with water basefluid.  相似文献   
18.
As a solid state joining process, ultrasonic spot welding has been proven to be a promising technique for joining copper alloys. However, challenges still remain in employing ultrasonic spot welding to join copper alloys. This article comprehensively reviews the current state of ultrasonic spot welding of copper alloys with a number of critical issues including materials flow, plastic deformation, temperature distribution, vibration, relative motion, vertical displacement, interface friction coefficient, online monitoring technique, coupled with the macrostructure and microstructure, the mechanical properties and electrical conductivity. In addition, the future trends in this field are provided.  相似文献   
19.
Effective thermal management of electronic integrated devices with high powder density has become a serious issue, which requires materials with high thermal conductivity (TC). In order to solve the problem of weak bonding between graphite and Cu, a novel Cu/graphite film/Cu sandwich composite (Cu/GF/Cu composite) with ultrahigh TC was fabricated by electro-deposition. The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electro-deposition. TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated. The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content, and the strong texture orientation of deposited Cu resulted in high TC. Under the optimizing preparing condition, the highest in-plane TC reached 824.3 W·m−1·K−1, while the ultimate tensile strength of this composite was about four times higher than that of the graphite film.  相似文献   
20.
The lead-free Ba0.53Sr0.47TiO3 (BST) thin films buffered with La0.67Sr0.33MnO3 (LSMO) bottom electrode of different thicknesses were fabricated by pulsed laser deposition method on a (001) SrTiO3 substrate. It was found that the roughness of electrode decreases and substrate stress relaxes gradually with the increase of LSMO thickness, which is beneficial for weakening local high electric field and achieving higher Eb. Therefore, the recoverable energy density (Wrec) of BST films can be greatly improved up to 67.3 %, that is, from 30.6 J/cm3 for the LSMO thickness of 30 nm up to 51.2 J/cm3 for the LSMO thickness of 140 nm after optimizing the LSMO thickness. Furthermore, the thin film capacitor with a 140 nm LSMO bottom electrode shows an outstanding thermal stability from 20 °C to 160 °C and superior fatigue resistance after 108 electrical cycles with only a slightly decrease of Wrec below 1.6 % and 3.7 %, respectively. Our work demonstrates that optimizing bottom electrodes thickness is a promising way for enhancing energy storage properties of thin-film capacitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号