首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39623篇
  免费   2969篇
  国内免费   1456篇
电工技术   1927篇
技术理论   2篇
综合类   1677篇
化学工业   7901篇
金属工艺   2277篇
机械仪表   4573篇
建筑科学   588篇
矿业工程   410篇
能源动力   8132篇
轻工业   3127篇
水利工程   79篇
石油天然气   260篇
武器工业   200篇
无线电   3345篇
一般工业技术   5142篇
冶金工业   1014篇
原子能技术   344篇
自动化技术   3050篇
  2024年   139篇
  2023年   994篇
  2022年   2096篇
  2021年   2596篇
  2020年   1696篇
  2019年   1505篇
  2018年   1202篇
  2017年   1473篇
  2016年   1297篇
  2015年   1215篇
  2014年   2084篇
  2013年   2756篇
  2012年   2302篇
  2011年   2972篇
  2010年   2196篇
  2009年   1988篇
  2008年   2031篇
  2007年   2103篇
  2006年   1885篇
  2005年   1617篇
  2004年   1360篇
  2003年   1108篇
  2002年   1060篇
  2001年   844篇
  2000年   679篇
  1999年   556篇
  1998年   445篇
  1997年   335篇
  1996年   306篇
  1995年   249篇
  1994年   195篇
  1993年   170篇
  1992年   117篇
  1991年   94篇
  1990年   69篇
  1989年   56篇
  1988年   43篇
  1987年   30篇
  1986年   37篇
  1985年   31篇
  1984年   25篇
  1983年   17篇
  1982年   15篇
  1981年   11篇
  1980年   17篇
  1979年   9篇
  1978年   4篇
  1976年   2篇
  1975年   2篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
In this paper, a model taking into account the effects of carrier loss mechanisms has been developed. The model simulates the photovoltaic properties of the graphene/n-type silicon Schottky barrier solar cells (G/n-Si_SBSC), and it can reproduce the experimentally determined parameters of the G/n-Si_SBSC. To overcome the low efficiencies of G/n-Si_SBSC, their performances have been optimized by modifying the work function of graphene and Si properties, accounted for variation of its thickness and doping level. The obtained results show that the work function of graphene has the major impact on the device performance. Also, the temperature dependence of the G/n-Si_SBSC performance is investigated.  相似文献   
52.
Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS) ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1–transient receptor potential melastatin 4 (Sur1–Trpm4) channels and, in some cases, microglial KATP (Sur1–Kir6.2) channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.  相似文献   
53.
It is expected that demand response might provide soon ancillary services to the power system. This could be done, for example, by managing the use of Electric Vehicles (EV) batteries, or the production of flexible energy commodities such as hydrogen (H2), that can be used for fuel cell vehicles (H2EV) or in industrial processes. This paper analyses the impact of a transition to H2EV as an alternative to EV for passengers’ cars on a Spanish-like power sector. A simple H2 demand estimation is developed and provided to CEVESA, an operation and expansion model for the Iberian Power System Electricity Market (MIBEL). For this study, CEVESA was extended to include the investments and operation decisions of H2 production. Simulations were performed to determine the optimal evolution of the H2 production capacity and of the electricity generation mix, considering scenarios with different shares of EV and H2EV. The impact of H2EV vs EV mobility is assessed based on the recent Spanish National Plan for Energy and Climate (NECP) as the base case scenario. Results show that, even if H2EV mobility alternative is still more costly than EV, H2 production could provide a significant flexibility to the system that should also be appraised. Indeed, H2EV mobility could become a feasible and complementary alternative to decarbonize mobility by powering H2 production with the renewable generation surplus. This, together with the on-going learning process of this technology that will decrease its production costs and increase its efficiency in the coming years, could boost, even more, the development of the H2 economy.  相似文献   
54.
Microbial fuel cell (MFC) is a promising technology for simultaneous wastewater treatment and energy harvesting. The properties of the anode material play a critical role in the performance of the MFC. In this study, graphene oxide was prepared by a modified hummer's method. A thin layer of graphene oxide was incorporated on the carbon brush using an electrophoretic technique. The deoxygenated graphene oxide formed on the surface of the carbon brush (RGO-CB) was investigated as a bio-anode in MFC operated with real wastewater. The performance of the MFC using the RGO-CB was compared with that using plain carbon brush anode (PCB). Results showed that electrophoretic deposition of graphene oxide on the surface of carbon brush significantly enhanced the performance of the MFC, where the power density increased more than 10 times (from 33 mWm?2 to 381 mWm?2). Although the COD removal was nearly similar for the two MFCs, i.e., with PCB and RGO-CB; the columbic efficiency significantly increased in the case of RGO-CB anode. The improved performance in the case of the modified electrode was related to the role of the graphene in improving the electron transfer from the microorganism to the anode surface, as confirmed from the electrochemical impedance spectroscopy measurements.  相似文献   
55.
An alternative Equivalent Electrical Circuit for Proton Exchange Membrane Fuel Cells is modelled in this study. Both I–V characteristics and H2 consumptions corresponding to generated power under load and no-load conditions are investigated. For this purpose, H2 consumptions and I–V characteristics of three different sized PEMFCs are tested. There is a very good harmony between the model results and measured values (relative error %0.7, %6.4 and %2.5 for FC-A, FC-B and FC-C respectively). In the proposed model current passes only on parallel resistance and not on serial resistance at no-load condition. Thus, a FC with higher parallel resistance should be preferred. Another key output of this study is that based on the proposed model, performance comparison of FCs can be performed with the parameters defined in this work. Proposals made in this study can easily be used for performance analysis of FCs under for both steady state and transient analysis.  相似文献   
56.
Textured surface is commonly used to enhance the efficiency of silicon solar cells by reducing the overall reflectance and improving the light scattering. In this study, a comparison between isotropic and anisotropic etching methods was investigated. The deep funnel shaped structures with high aspect ratio are proposed for better light trapping with low reflectance in crystalline silicon solar cells. The anisotropic metal assisted chemical etching (MACE) was used to form the funnel shaped structures with various aspect ratios. The funnel shaped structures showed an average reflectance of 14.75% while it was 15.77% for the pillar shaped structures. The average reflectance was further reduced to 9.49% using deep funnel shaped structures with an aspect ratio of 1:1.18. The deep funnel shaped structures with high aspect ratios can be employed for high performance of crystalline silicon solar cells.  相似文献   
57.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
58.
《Ceramics International》2021,47(22):31413-31422
Based on reactive air brazing (RAB), we designed a new type of sealant (Ag–xCuAlO2) for joining 3 mol.% yttria-stabilized zirconia (YSZ) ceramics and AISI 310S stainless steel. The CuAlO2 content affected the wettability of the sealant on the YSZ surface, and the joints had a high shear strength when Ag–2 wt.%CuAlO2, which had a small contact angle on the YSZ substrate, was used as the sealant. In addition, the thickness of the oxide layer was reduced compared to that for the Ag–CuO sealant. The effects of the processing parameters on the microstructure and shear strength of the joints were investigated, and the as-brazed joints reached their highest shear strength (93.7 MPa) when brazed at 1040 °C for 30 min. After high-temperature oxidation at 800 °C for 200 h, the shear strength of the joints remained at 50 MPa, and no apparent change in the microstructure was observed, proving that the joints possessed excellent oxidation resistance.  相似文献   
59.
60.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号