首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39498篇
  免费   2336篇
  国内免费   3208篇
电工技术   985篇
综合类   2105篇
化学工业   6072篇
金属工艺   15547篇
机械仪表   4770篇
建筑科学   1669篇
矿业工程   745篇
能源动力   637篇
轻工业   414篇
水利工程   267篇
石油天然气   3554篇
武器工业   289篇
无线电   453篇
一般工业技术   4861篇
冶金工业   2070篇
原子能技术   370篇
自动化技术   234篇
  2024年   225篇
  2023年   674篇
  2022年   1056篇
  2021年   1319篇
  2020年   1362篇
  2019年   1246篇
  2018年   1125篇
  2017年   1647篇
  2016年   1532篇
  2015年   1437篇
  2014年   1992篇
  2013年   2175篇
  2012年   2403篇
  2011年   2859篇
  2010年   2195篇
  2009年   2392篇
  2008年   1776篇
  2007年   2435篇
  2006年   2449篇
  2005年   1884篇
  2004年   1891篇
  2003年   1597篇
  2002年   1333篇
  2001年   1100篇
  2000年   913篇
  1999年   759篇
  1998年   587篇
  1997年   573篇
  1996年   451篇
  1995年   416篇
  1994年   300篇
  1993年   206篇
  1992年   181篇
  1991年   107篇
  1990年   100篇
  1989年   102篇
  1988年   69篇
  1987年   38篇
  1986年   18篇
  1985年   20篇
  1984年   20篇
  1983年   13篇
  1982年   20篇
  1981年   8篇
  1980年   14篇
  1979年   4篇
  1978年   6篇
  1975年   2篇
  1959年   5篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
《Ceramics International》2020,46(8):11846-11853
Cr2AlC and its composites containing α-Al2O3 (6.1 and 15.2 wt %) were prepared by hot pressing and their corrosion behaviors in air-saturated 3.5 wt % NaCl aqueous solution were investigated by electrochemical testing methods. It was revealed that the secondary phase of Al2O3 particles mainly distributed along grain boundaries of Cr2AlC matrix. The potentiodynamic polarization measurements showed that the corrosion current densities of these Cr2AlC composites were lower than that of the pure Cr2AlC. The Aluminum in Cr2AlC was prone to be attacked more easily. When immersed at open circuit potential (OCP), Al readily slipped out from Cr2AlC matrix into NaCl solution in the form of dissoluble species. But in the case of polarization, regardless of potentiostatic polarization or potentiodynamic polarization, more de-intercalated Al, reacted with the electrolyte to form corrosion products of Al2O3 and/or AlOOH and deposited on the sample surface. For Cr2AlC/α-Al2O3 composites, the presence of Al2O3 weakened the corrosion along grain boundaries by partly blocking the permeation of electrolyte and inhibiting the anodic dissolution process.  相似文献   
32.
33.
34.
Thermal sprayed ceramic coatings have extensively been used in components to protect them against friction and wear. However, the poor lubricating ability severely limits their application. Herein, yttria-stabilized zirconia (YSZ)/MoS2 composite coatings were successfully fabricated on steel substrate with the combination of thermal spraying technology and hydrothermal reaction. Results show that the synthetic MoS2 powders are composed of numbers of ultra-thin sheets (about 7 ~ 8?nm), and the sheet has obvious lamellar structure. After vacuum impregnation and hydrothermal reaction, numbers of MoS2 powders, look like flowers, generate inside the plasma sprayed YSZ coating. Moreover, the growing point of the MoS2 flower is the intrinsic micro-pores of YSZ coating. The friction and wear tests under high vacuum environment indicate that the composite coating has an extremely long lifetime (>?100,000 cycles) and possesses a low friction coefficient less than 0.1, which is lower by about 0.15 times than that of YSZ coating. Meanwhile, the composite shows an extremely low wear rate (2.30?×?10?7 mm3 N?1 m?1) and causes slight wear damage to the counterpart. The excellent lubricant and wear-resistant ability are attributed to the formation of MoS2 transfer films and the ultra-smooth of the worn surfaces of hybrid coatings.  相似文献   
35.
Understanding the corrosion of molten ZnCl2 on metal surfaces is significant for the corrosion protection of metals, sustainable use of molten salts, preparation of ZnO coatings, and so on. In this paper, surfaces of pure Ni, Cr, and Fe corroded by molten ZnCl2 were investigated. The results show that Ni suffered very slight corrosion, while Cr experienced more serious corrosion than Ni, but lighter corrosion than Fe. The morphology of the corrosion of Cr and Fe, respectively, presented pitting and intergranular corrosion characteristics. Furthermore, nanostructured ZnO coatings were obtained on the surfaces of Ni and Fe, but not on the surface of Cr. The ZnO coating on the Ni surface was doped with a small amount of Zn5(OH)8Cl2, and the ZnO coating on the Fe surface was doped with ZnFe2O4 and Zn2OCl2. The coatings on the Ni and Fe surfaces had an average thickness of 1.5 and 50 μm, respectively.  相似文献   
36.
37.
This paper discusses the effects of the grinding-induced cyclic heating on the properties of the hardened layer in a plunge cylindrical grinding process on the high strength steel EN26. It was found that a multi-pass grinding brings about a uniform and continuous hardened layer along the circumference of the cylindrical workpiece. An increase of the number of grinding passes, leads to a thicker layer of hardening, a larger compressive residual stress and a deeper plastic deformation zone. Within the plastic deformation zone, the martensitic grains are refined by the thermo-mechanical loading, giving rise to a hardness of 12.5% higher than that from a conventional martensitic transformation. The coupled effects of heat accumulation and wheel wear in the multi-pass grinding are the main causes for the thickening of the hardened layer. A too small infeed per workpiece revolution would result in insufficient grinding heat, and in turn, bring about an undesirable tempered hardened layer and a reduction of its hardness.  相似文献   
38.
Al–Cr slag is the solid waste generated by the smelting of Cr metal. It presents a range of environmental hazards. This study addressed the corrosion resistance of Al–Cr slag containing chromium–corundum refractories to slags with different basicity. Herein, we provide suggestions for the use of Cr–corundum of different basicity in kilns. Al–Cr slag, brown fused Al2O3, and chrome green were used as the raw materials, with pure calcium aluminate cement being used as a binder. The brick samples, prepared using different blends of chrome green and corundum, were fired at 1600?°C, and subsequently subjected to a slag corrosion test. After corrosion by slag of different basicity, the phase composition and microstructure of the sample were analyzed by X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy. There were two major findings. First, Cr–corundum brick made from Al–Cr slag has a better slag corrosion resistance than that made from Cr2O3 and brown fused Al2O3. Second, Cr–corundum brick made from Al–Cr slag has superior corrosion resistance to slag with a CaO:SiO2 ratio of 2:1.  相似文献   
39.
Although Mg alloy attracts great attention for engineering applications because of high specific strength and low density, low corrosion resistance limits its extensive use. In this study, Mg–Al–Zn–Mn alloy was treated via a laser cladding process to generate a dense and compact laser cladding layer with solid metallurgical bonding on the substrate for improving corrosion resistance, effectively hindering the corrosion pervasion into Mg alloy. The corrosion current density declined from 103 μA/cm2 for Mg alloy to 13 μA/cm2 for the laser cladding layer in NaCl aqueous solution. Moreover, the laser cladding layer was slightly corroded in comparison with Mg alloy in NaCl aqueous solution. Besides, the microhardness of the cladding layer reached a mean value of 170.5 HV, 3.1 times of Mg alloy (56.8 HV) due to the in situ formation of hardening intermetallic phases. Wear resistance of laser cladding layer was also obviously improved. These results demonstrated that the laser cladding layer obviously enhanced anticorrosion property of Mg alloy for engineering applications.  相似文献   
40.
Although Mg alloy possesses high specific strength, low density, and good biocompatibility, poor corrosion resistance hinders its further applications. In the present study, an innovative protective layer against corrosion was prepared on the AZ31 Mg alloy via alkali pretreatment followed by vanillic acid treatment. The alkali pretreatment supplied –OH for the AZ31 Mg alloy surface to react with vanillic acid. The vanillic acid treatment played a crucial role in enhancing the corrosion resistance due to the excellent ability to act as a barrier and retard aqueous solution penetration, which effectively isolated the underlying Mg alloy from the corrosive environment. The corrosion current density of alkali and vanillic acid-treated Mg alloy (AZ31V) almost showed two orders of magnitude lower values in comparison with that of the AZ31 Mg alloy, and the corrosion potential of AZ31V Mg alloy increased from −1.41 to −1.25 V. The immersion tests proved that there was no occurrence of severe corrosion. Hence, the alkali pretreatment and vanillic acid treatment may represent a promising method to improve the corrosion resistance of Mg alloy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号