首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   826篇
  免费   77篇
  国内免费   41篇
电工技术   4篇
综合类   8篇
化学工业   371篇
金属工艺   29篇
机械仪表   41篇
建筑科学   13篇
能源动力   2篇
轻工业   245篇
水利工程   1篇
无线电   18篇
一般工业技术   171篇
冶金工业   12篇
原子能技术   7篇
自动化技术   22篇
  2024年   4篇
  2023年   44篇
  2022年   181篇
  2021年   171篇
  2020年   39篇
  2019年   46篇
  2018年   21篇
  2017年   38篇
  2016年   35篇
  2015年   35篇
  2014年   27篇
  2013年   44篇
  2012年   31篇
  2011年   26篇
  2010年   29篇
  2009年   17篇
  2008年   22篇
  2007年   25篇
  2006年   14篇
  2005年   18篇
  2004年   10篇
  2003年   8篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   6篇
  1997年   9篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
排序方式: 共有944条查询结果,搜索用时 15 毫秒
131.
Exosomes mediate intercellular communication, shuttling messages between cells and tissues. We explored whether exosome tissue sequestration is determined by the exosomes or the tissues using ten radiolabeled exosomes from human or murine, cancerous or noncancerous cell lines. We measured sequestration of these exosomes by the liver, kidney, spleen, and lung after intravenous injection into male CD-1 mice. Except for kidney sequestration of three exosomes, all exosomes were incorporated by all tissues, but sequestration levels varied greatly among exosomes and tissues. Species of origin (mouse vs. human) or source (cancerous vs. noncancerous cells) did not influence tissue sequestration. Sequestration of J774A.1 exosomes by liver involved the mannose-6 phosphate (M6P) receptor. Wheatgerm agglutinin (WGA) or lipopolysaccharide (LPS) treatments enhanced sequestration of exosomes by brain and lung but inhibited sequestration by liver and spleen. Response to LPS was not predictive of response to WGA. Path and heat map analyses included our published results for brain and found distinct clusters among the exosomes and the tissues. In conclusion, we found no evidence for a universal binding site controlling exosome-tissue interactions. Instead, sequestration of exosomes by tissues is differentially regulated by both exosomes and tissues and may be stimulated or inhibited by WGA and inflammation.  相似文献   
132.
The vulnerable population of kidney transplant recipients (KTRs) are low responders to COVID-19 vaccines, so specific immune surveillance is needed. The interferon-gamma (IFN-γ) release assay (IGRA) is effective in assessing T cell-mediated immunity. We assessed SARS-CoV-2-directed T cell responses in KTRs with absent antibody production after a third dose of the mRNA-1273 vaccine, using two different IGRAs. A cohort of 57 KTRs, who were actively followed up, received a third dose of the mRNA-1273 vaccine. After the evaluation of humoral immunity to SARS-CoV-2, 14 seronegative patients were tested with two commercial IGRAs (SD Biosensor and Euroimmun). Out of 14 patients, one and three samples were positive by IGRAs with Euroimmun and SD Biosensor, respectively. The overall agreement between the two assays was 85.7% (κ = 0.444). In addition, multivariate linear regression analysis showed no statistically significant association between the IFN-γ concentration, and the independent variables analyzed (age, gender, years since transplant, total lymphocytes cells/mcl, CD3+ cells/mcl, CD3+ CD4+ cells/mcl, CD3+ CD8+ cells/mcl, CD19+ cells/mcl, CD3-CD16+CD56+ cells/mcl) (p > 0.01). In a vulnerable setting, assessing cellular immune response to complement the humoral response may be advantageous. Since the two commercial IGRAs showed a good agreement on negative samples, the three discordant samples highlight the need for further investigations.  相似文献   
133.
Low-intensity pulsed ultrasound (LIPUS), a therapeutic type of ultrasound, is known to enhance bone fracture repair processes and help some tissues to heal. Here, we investigated the therapeutic potential of LIPUS for the treatment of chronic kidney disease (CKD) in two CKD mouse models. CKD mice were induced using both unilateral renal ischemia/reperfusion injury (IRI) with nephrectomy and adenine administration. The left kidneys of the CKD mice were treated using LIPUS with the parameters of 3 MHz, 100 mW/cm2, and 20 min/day, based on the preliminary experiments. The mice were euthanized 14 days after IRI or 28 days after the end of adenine administration. LIPUS treatment effectively alleviated the decreases in the body weight and albumin/globulin ratio and the increases in the serum renal functional markers, fibroblast growth factor-23, renal pathological changes, and renal fibrosis in the CKD mice. The parameters for epithelial–mesenchymal transition (EMT), senescence-related signal induction, and the inhibition of α-Klotho and endogenous antioxidant enzyme protein expression in the kidneys of the CKD mice were also significantly alleviated by LIPUS. These results suggest that LIPUS treatment reduces CKD progression through the inhibition of EMT and senescence-related signals. The application of LIPUS may be an alternative non-invasive therapeutic intervention for CKD therapy.  相似文献   
134.
目的:观察红芸豆多糖(Polysaccharides from red kidney bean,PRK)联合运动(Exercise,E)改善饮食诱导的肥胖小鼠代谢紊乱,并分析其机制。方法:40只C57BL/6小鼠随机分为5组:对照组(正常饮食)、模型组(高脂饮食)、PRK组(400 mg/kg PRK)、E组(运动)、PRK+E组(400 mg/kg PRK+运动),连续干预12周,并进行口服葡萄糖耐量试验(OGTT),生化分析仪测定血糖、胰岛素、总胆固醇(TC)、三酰甘油(TG)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、肝脏TC、TG、超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)水平。酶联免疫试剂盒检测胰岛素、肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、IL-1β含量。H&E染色对肝脏进行病理分析,Western Blot实验检测PPARα、FASN、Nrf2、NQO1、HO-1水平。结果:与对照组比较,模型组小鼠的体重和肝质量极显著增加(P<0.01);与模型组比较,PRK联合运动极显著降低肥胖小鼠的体重和脂质,降低血糖和胰岛素水平(P<0.01)。与模型组比较,PRK联合运动极显著降低血清中TG、TC、LDL含量,极显著增加HDL,极显著降低肝脏TNF-α、IL-6和IL-1β水平,极显著下调肝脏TG、TC水平,极显著增加肝脏中PPARα水平,极显著降低FASN水平(P<0.01)。与模型组比较,PRK、E或PRK+E联合干预极显著提高肝脏GSH-Px和SOD水平,极显著降低MDA含量,极显著增加Nrf2、NQO1和HO-1蛋白水平,尤其PRK+E联合干预更加明显(P<0.01)。结论:PRK联合运动通过减少脂质积累、抑制炎症、氧化应激改善肥胖引起的代谢障碍,其机制与调节PGC-1α、FASN、Nrf2/NQO1/HO-1 信号通路相关。  相似文献   
135.
Coagulopathies common to patients with diabetes and chronic kidney disease (CKD) are not fully understood. Fibrin deposits in the kidney suggest the local presence of clotting factors including tissue factor (TF). In this study, we investigated the effect of glucose availability on the synthesis of TF by cultured human kidney tubular epithelial cells (HTECs) in response to activation of protease-activated receptor 2 (PAR2). PAR2 activation by peptide 2f-LIGRLO-NH2 (2F, 2 µM) enhanced the synthesis and secretion of active TF (~45 kDa) which was blocked by a PAR2 antagonist (I-191). Treatment with 2F also significantly increased the consumption of glucose from the cell medium and lactate secretion. Culturing HTECs in 25 mM glucose enhanced TF synthesis and secretion over 5 mM glucose, while addition of 5 mM 2-deoxyglucose (2DOG) significantly decreased TF synthesis and reduced its molecular weight (~40 kDa). Blocking glycosylation with tunicamycin also reduced 2F-induced TF synthesis while reducing its molecular weight (~36 kDa). In conclusion, PAR2-induced TF synthesis in HTECs is enhanced by culture in high concentrations of glucose and suppressed by inhibiting either PAR2 activation (I-191), glycolysis (2DOG) or glycosylation (tunicamycin). These results may help explain how elevated concentrations of glucose promote clotting abnormities in diabetic kidney disease. The application of PAR2 antagonists to treat CKD should be investigated further.  相似文献   
136.
为了揭示牦牛肾脏细胞在重金属胁迫下的毒理性影响,在培养出的肾脏细胞中加入不同浓度的重金属离子铅(Pb2+)和镉(Cd2+),提取总RNA,在逆转录酶的作用下生成c DNA,利用实时荧光定量技术检测牦牛肾脏细胞中金属硫蛋白mRNA的相对表达量。结果显示,将牦牛肾脏细胞中加入重金属浓度为0μmol/L的值设定为对照组,2-ΔΔCt值设为1时,加入重金属铅的不同浓度0、5、10、20、30μmol/L的样品相对定量五种不同浓度的样品的2-ΔΔCt分别为0.489、0.603、0.796、3.031;添加镉的五种不同浓度的样品的2-ΔΔCt分别为5.280、3.530、8.110、11.630。通过差异性显著分析得出当重金属离子铅(Pb2+)和镉(Cd2+)添加10μmol/L时对肾脏细胞的生长有明显的抑制作用,相应的金属硫蛋白mRNA表达量较高,通过mRNA相对表达量的比较得出重金属镉的毒性比铅强,当重金属的添加量比较低时,重金属离子通过结合MT降低对肾脏细胞的毒害作用。   相似文献   
137.
Fe, Zn, Mn and Cu levels in three Turkish legumes, kidney bean (Phaseolus vulgaris L.), lentil (Lens esculenta) and chickpea (Cicer arietinum), were determined by flame atomic absorption spectrometry. Dissolution conditions in the microwave‐assisted wet digestion method were studied by investigating several variables, including type of acid mixture, acid volume, digestion time, microwave power input and sample weight. Comparison with conventional wet acid digestion was also made. In order to check the element losses during digestion and the accuracy of the results, all tests were repeated after the addition of a spiked standard element solution to the legume sample. The microwave‐assisted digestion procedure optimised for kidney bean was adapted for lentil and chickpea. Fe, Zn, Mn and Cu concentrations (mg per 100 g sample) were determined in kidney bean as 6.27 ± 0.94, 2.23 ± 0.36, 1.64 ± 0.14 and 0.99 ± 0.19, in lentil as 8.24 ± 1.11, 2.46 ± 0.06, 1.17 ± 0.19 and 1.01 ± 0.28 and in chickpea as 6.00 ± 1.40, 2.21 ± 0.14, 1.60 ± 0.43 and 0.58 ± 0.18 respectively. Copyright © 2005 Society of Chemical Industry  相似文献   
138.
A total of 1040 pork kidneys were purchased from 4 retail stores located in a Midwestern US town and screened for antibiotics with the Charm-KIS? screening test. Six samples (0.6%) tested positive with the Charm-KIS?. Sixty-five samples from each retail location and the 18 Charm-KIS? positive or ‘caution’ samples were also subjected to ELISA to determine the presence of commonly used veterinary drugs including flunixin, ractopamine, sulfamethazine, and/or tetracycline of the 278 samples assessed by ELISA, flunixin, ractopamine, sulfamethazine, and tetracycline residues were found to be 0%, 22%, 4%, and 10% ELISA positive respectively, and had greater than limit of quantitation concentrations as measured by LC-MS/MS. All residue levels determined by LC-MS/MS were well below US tolerances, regardless of analyte. These findings suggest that veterinary drugs are being used in accordance with US regulations and that veterinary drug residues in pork do not pose a health concern to US consumers.  相似文献   
139.
140.
目的提高肾移植术后患者药物治疗效果,降低术后不良反应。方法加强血药浓度监测,调整用药剂量和品种,为患者建立药历,开展用药指导。结果与结论通过实施药学监护有效降低了肾移植术后药物不良反应发生率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号