Reaction-bonded Si3N4 (RBSN) made from high-purity Si powder is unusually resistant to degradation caused by exposures to air for up to 50 h at temperatures up to 1400°C. The weight gain during oxidation of this SiH4-originating RBSN is approximately 10 times less than conventional RBSN. Contrary to normally observed strength degradations, room-temperature strengths of this high-purity, oxidized RBSN (avg = 435 MPa, max. = 668 MPa) remained at their unusually high, as-processed levels after 1000° and 1400°C oxidizing exposures. Fracture toughness values were unaffected by oxidation ( K IC= 2.3 to 2.4 MPa · m1/2). This superior oxidation resistance results from the high purity and the small diameter pore channels (0.01 to 0.06 μm) achieved in this SiH4-originating RBSN. 相似文献
Changes in the liquid hold-up, ?, and the diameter of d, of a foam that are induced by perforated plates (PPs) and the contribution of PPs to foam-breaking were studied. A foaming system containing a dilute detergent solution in a column with mechanical agitation fitted with a rotating-disk foam-breaker (MFRD) was used. After the foam passed through the PPs, ? and d decreased and increased, respectively. The use of PPs to achieve a maximum reduction in ? and a maximum increase in d is confirmed. It is also demonstrated that use of PPs contributes not only to improving the foam-breaking performance of the MFRD, but also to power savings. 相似文献
Due to huge calculation of SAR echo simulation of a three-dimensional (3D) ground scene, a fast simulation method is proposed. First, the data of a 3D ground scene are fractionally interpolated based on the Fractional Brownian Motion (FBM) model. Second, the data interpolated are divided into lots of small facets whose precision meets the simulation requirement, the backscattering coefficients of the small facets are calculated. Third, the shaded area is judged by the comparison method of overlook angles. Three parallel levels are analyzed and the kernel function is designed. Finally, the computing method of reduction adding and external thread are also utilized under the framework of GPU in order to get high efficiency. With the methods mentioned above, the imaging result of experimental DEM data verifies the validity and superiority of the proposed method. 相似文献
Butt joints between Mg alloy AZ31 B and pure Al 1 060 sheets were produced via metal inert gas welding process with Zn-Cd alloy foil. Crack-free Al/Mg butt joints between AZ31 B Mg alloy and pure Al 1060 sheets were obtained. Intermetallic compound layer 1 and layer 2 had formed in fusion zone/Mg alloy and the average thickness of the layer 1 was about 50 μm. The intermetallic compound layer 1 consisted of Al12Mg17 and Mg2Si phases while layer 2 consisted of Al12Mg17, Mg2Si and Mg Zn2 phases. The crack started from the IMC layer at the bottom of the joint and propagated along the brittle IMC layer, then expanded into weld metal during the SEM in situ tensile test. The highest tensile strength of the dissimilar metal butt joints could reach 46.8 MPa and the effect ofinterfacial IMC layer on mechanical property of the joint was discussed in detail in the present study. 相似文献
Uncertainty on the geological contacts and the block volumes of the models along boundaries is often a major part of the global uncertainty of reserve estimation.This work introduces a geostatistical technique that has been developed and tested in an iron ore deposit at Bafq mining district,in central Iran,and that,based on a probability criterion,helps to objectively model the geometry of this iron ore deposit.The main problem in reserve estimation of this ore body is its geometrical modeling and uncertainty in geological boundaries.This work deals with the geostatistical method of multiple indicator kriging,which is used to determine the real boundaries of ore body in different categories.This approach has potential to improve project performance and decrease operational risk.For this purpose,the ore body is separated into two categories including rich iron zone (w(Fe)〉45%) and poor iron zone (20%〈w(Fe)〈45%).It significantly benefits to decrease the risk of reserve evaluation in the deposit.This case study also highlights the value of multiple indicator kriging as a tool for estimates the position of grade boundaries within the deposit.Comparison of the resultant probability maps with the real ore/waste contacts on the extracted levels shows that the first indicator model could separate the whole ore body (poor plus rich) from the waste zone by probability of more than 0.35,which concludes the total reserve of 53 million tons.The second indicator model applied to separate the rich and poor domains and the results show that the blocks with the estimated probability of equal to or more than 0.4 lay within the rich ore zone consisting of 15.8 million tons reserve. 相似文献