全文获取类型
收费全文 | 194篇 |
免费 | 36篇 |
国内免费 | 27篇 |
专业分类
电工技术 | 2篇 |
综合类 | 10篇 |
化学工业 | 33篇 |
金属工艺 | 40篇 |
机械仪表 | 20篇 |
建筑科学 | 7篇 |
矿业工程 | 7篇 |
能源动力 | 2篇 |
轻工业 | 15篇 |
水利工程 | 2篇 |
石油天然气 | 13篇 |
武器工业 | 7篇 |
无线电 | 34篇 |
一般工业技术 | 51篇 |
冶金工业 | 3篇 |
自动化技术 | 11篇 |
出版年
2024年 | 8篇 |
2023年 | 20篇 |
2022年 | 35篇 |
2021年 | 30篇 |
2020年 | 24篇 |
2019年 | 11篇 |
2018年 | 18篇 |
2017年 | 11篇 |
2016年 | 16篇 |
2015年 | 16篇 |
2014年 | 10篇 |
2013年 | 10篇 |
2012年 | 12篇 |
2011年 | 13篇 |
2010年 | 7篇 |
2009年 | 5篇 |
2008年 | 1篇 |
2007年 | 1篇 |
2006年 | 3篇 |
2005年 | 2篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2001年 | 1篇 |
1996年 | 1篇 |
排序方式: 共有257条查询结果,搜索用时 0 毫秒
41.
利用管式电阻炉和X射线衍射仪(XRD)实施了对恒温退火处理100、200、300和500 nm 4种粒径的微纳米铁粉热稳定特性实验研究,通过函数拟合衍射峰图谱计算其微观应变,分析退火过程中微纳米铁粉晶粒长大现象。结果表明:微观应变的大小和晶粒长大过程密切相关,随着退火温度升高,微观应变逐渐减小,晶粒尺寸增大。100、200和300 nm微纳米铁粉200℃以下晶粒长大迅速,200℃以上长大速度减小;500 nm铁粉晶粒200℃以下长大速度比较缓慢,200℃以上晶粒迅速长大。低温下大粒径铁粉热稳定性优于小粒径铁粉。 相似文献
42.
目的 研究微米结构中心距对微纳二级结构超疏水硅表面热交换效率的影响。方法 首先采用湿法腐蚀在硅表面构建中心距分别为22、24、26、28、30 μm的微米四棱台结构,然后采用溶胶-凝胶法在表面涂覆疏水的纳米二氧化硅颗粒,获得微纳二级结构超疏水表面。通过表面接触角测量仪分析表面的湿润性,通过扫描电镜观察表面的微观形貌特征,使用光学显微镜观察冷凝小液滴自迁移现象,使用电子天平称量表面的冷凝集水质量。结果 当纳米结构相同时,随着微米结构中心距的增加,液滴静态接触角减小,冷凝小液滴的自迁移频率变慢,相同时间段内,平均集水效率下降。当相对湿度大于90%时,会出现表面“淹没”现象。微纳二级结构超疏水硅表面(微米结构间距22 μm)的集水效率是单独微米结构硅表面的1.38倍、单独纳米结构疏水表面的1.27倍、疏水硅光片表面的1.75倍、光二氧化硅亲水表面的3.6倍。结论 当纳米结构相同时,在一定范围内适当减小微米结构的中心距,有助于增强微纳二级结构超疏水硅表面热交换效率。 相似文献
43.
本研究以铜渣为原料,通过碳热还原法制备多孔硅酸盐负载型微纳米铁(简称微纳米铁),用于去除废水中的Cr(VI)。研究了微纳米铁的制备条件和废水降解条件对去除Cr(VI)的影响,并探究了相关的反应机理。结果表明,在焙烧温度为1 150℃、焙烧时间为40 min、煤用量为25%的条件下制备的微纳米铁去除Cr(VI)的效率最高。扫描电子显微镜和能谱分析表明,铜渣还原焙烧后形成多孔结构,硅酸盐孔洞表面镶嵌大量纳米级至微米级零价铁颗粒。增加微纳米铁的用量、提高废水温度和降低溶液的初始pH值,可以提高Cr(VI)的去除率。在微纳米铁用量为1 g/L、废水温度为27℃、初始pH为3的条件下,处理浓度为10 mg/L的废水,反应2.5 min即可去除100%的Cr(VI)。机理分析表明,微纳米铁与Cr(VI)发生了氧化还原反应,Cr(VI)被还原生成Cr(Ⅲ)并被矿化为铬铁矿。 相似文献
44.
在半导体工业,摩尔定律预测每过2年芯片上晶体管的数量就增加一倍,芯片运行的速度也会增加一倍。目前,超高的热流密度已成为摩尔定律面临的一个瓶颈。微纳结构利用尺寸效应、界面效应和新的材料构成体系,有可能为半导体工业提供颠覆性的技术解决方案。系统研究尺寸效应、应变场和温度场对声子和电子输运规律的影响以及结构相变或尺寸效应对Wiedemann-Franz定律的影响,可以精确理解声子、电子在微纳结构上的输运规律,从而为半导体工业寻找新材料提供精准的技术路线图。 相似文献
45.
氟硅聚合物涂层是一种以有机硅、氟改性有机硅或有机氟为基体的材料,具有表面能低、稳定性高、易加工等特点,广泛应用于国防军事、轻工、机械、化工、医学等领域。综述了近年来氟硅聚合物常用的合成方法,如原子转移自由基聚合(ATRP)法、阴离子开环聚合法、硅烷偶联剂法、硫醇–烯点击法等,采用上述方法合成的氟硅聚合物,因其有序的氟/硅–碳排列,使得制备的涂层材料具有润湿性低和稳定性高等特点,在防污、抗菌等领域有着巨大的应用前景。同时,综述了不同维度材料修饰的氟硅聚合物涂层的研究进展,如一维材料(纳米线、纳米管等)、二维材料(片状硫化铜、石墨烯、MXene、氮化硼等)和三维材料(CeO2、SiO2、Fe3O4等颗粒及微胶囊)。对不同维度材料在防覆冰、抗菌、导电、导热、红外隐身、光催化、自修复等领域的应用和作用机制进行了分析。此外,综述了有机链段(聚氨酯、环氧树脂、聚甲基丙烯酸甲酯等)改性的氟硅聚合物涂层在医学、防污、自修复等领域的应用,并对其作用机制进行了分析。最后,对氟硅聚合物涂层研究中存在的问题进行了归纳,并对... 相似文献
46.
目的 构筑氧化锆表面微纳结构,提高表面疏水性能。方法 用飞秒激光在氧化锆表面刻蚀网格结构,随后用硬脂酸修饰所得表面,系统研究了激光能量密度、激光扫描速度对氧化锆表面形貌及润湿性的影响,分析不同处理条件下氧化锆的表面形貌和润湿性,通过润湿模型进一步揭示润湿性转变内在机理。进一步通过在饱和大肠杆菌溶液中浸泡的试验,对不同处理条件下氧化锆表面的抗菌性能进行了测试和分析。结果 在9.6 J/cm2的过高能量密度以及10 mm/s的过小扫描速度下会导致氧化锆表面过度烧蚀,破坏表面微结构,不利于提高表面疏水性。发现激光纹理化氧化锆的最佳参数为激光能量密度8.3 J/cm2,扫描速度20 mm/s,制备的微凸起结构为表面覆盖大量纳米结构的周期性锥状阵列,凹槽的平均宽度和平均深度分别为(27.598±1.376)μm和(33.825±0.559)μm,此时表面粗糙度最大为9.556 μm,随着表面粗糙度的增加,微纳复合结构可以截留更多的空气,减少固液接触面积,表面具有最大的水接触角为(163.9±1.5)°,最小的水滚动角为(4.3±0.8)°。平板菌落计数法测定结果显示,此时硬脂酸修饰的激光纹理化氧化锆超疏水表面的抗菌率最高,为(89.1±3.6)%。结论 采用飞秒激光刻蚀结合硬脂酸修饰的方法,通过激光参数优化,可在氧化锆表面产生微纳复合结构,增加其表面粗糙度,从而制备得到疏水甚至超疏水的氧化锆表面,超疏水氧化锆表面截留的空气层对大肠杆菌的黏附具有很好的抑制作用,表现出明显的抗菌性,有望扩展氧化锆在牙科领域的应用。 相似文献
47.
铁基可降解金属因其良好的生物相容性和优异的机械性能,在骨科植入物领域具有广阔的应用前景,但必须突破其降解速率过慢的瓶颈问题。本研究通过电化学技术对3D打印多孔铁锰合金(Fe-30Mn)支架表面进行去合金化处理。通过扫描电镜观察发现,以盐酸和氯化钠分别作为去合金化处理介质溶液,可以在支架表面形成多微孔网络结构和片状纳米结构。接触角和粗糙度测试显示,2种微纳结构的构建均显著改善了Fe-30Mn支架表面亲水性,并提升了其表面粗糙度,多微孔网络结构更加粗糙并且亲水性更好。利用静态浸泡法和电化学耐腐蚀实验评估合金化处理前后支架的腐蚀速率,发现表面微纳结构的形成可加速Fe-30Mn支架的降解。建立体外成骨细胞培养模型,通过激光共聚焦观察及细胞增殖测试发现,经合金化处理的2种支架均能支撑细胞的贴附和增殖,具有良好的细胞相容性。结果表明,经电化学去合金化处理后,Fe-30Mn支架的降解速度得以增强,同时保持了良好的生物相容性,有望在骨修复领域得到较好应用。 相似文献
48.
针对分布式遥感编队中的协同观测问题,本文开展了多星协同姿态控制研究。首先建立了参考航天器由对日定向到对目标凝视观测的期望姿态,设计了基于姿态、角速度偏差的比例-微分(PD)控制器,证明了闭环系统的李雅普诺夫稳定性。在此基础上,进一步建立了伴飞航天器的期望姿态,为使目标在不同航天器像平面上成像位置匹配,以伴飞航天器、参考航天器的姿态之差为基础设计了伴飞航天器的PD控制器,证明了系统的稳定性。最后,将理论结果进行了仿真验证,结果显示伴飞航天器、参考航天器姿态控制误差小于0.01°,精度满足分布式遥感多星协同观测的任务需求。 相似文献
49.
针对一次性蜡模或光刻工艺制备方向性黏附阵列效率低且工艺复杂的问题,提出了基于微纳3D打印技术的楔形微结构阵列高效制备工艺,制备的仿生楔形阵列材料具有良好的黏附性能和方向性黏附特性。首先,仿生设计了具有方向性特性的楔形阵列黏附结构。然后,利用微纳3D打印技术加工了相应的微结构阵列模具,发展了仿生黏附材料制备工艺,分析了楔形结构的轮廓精度。最后,搭建了实验测试平台,研究了剪切方向、剪切距离、预压力、脱附速度等因素对黏附性能的影响规律。结果表明,仿生楔形阵列黏附材料具有显著的方向性黏附特性,验证了微纳3D技术用于制备仿生方向性干黏附材料的可行性。 相似文献
50.
探讨了将铁尾矿砂作为制备保温隔热复合材料原料的可行性,其核心技术是先将铁尾矿砂微纳米化,再掺混SiO2气凝胶并添加少量粘合剂和玻璃纤维等制成性能优良的微纳孔保温隔热材料。通过正交试验得到保温性能最优状态下的各因素配方;研究了微纳米化对基体材料性能的改善状况及不同掺量气凝胶对基体材料性能的影响;通过扫描电镜观察了复合材料内部各成分在基质中的存在状态,微观结构显示气凝胶形态保持完好。 相似文献