A simple N‐heterocyclic carbene (NHC) derived from 1‐methyl‐3‐ethylimidazolium tetrafluoroborate was found to be an efficient ligand for a range of copper‐catalyzed cross‐coupling reactions, leading to the formation of aromatic ethers and thioethers.
Incorporation of Nb2O5 or ZrO2 into both Li/MgO and Li/Na/MgO systems produced ternary and quaternary catalysts, respectively, capable of attaining optimal C2 yields and selectivities at lower temperatures relative to the unpromoted materials. The degree of enhancement effected by these metal oxide additives was compared to that produced by Li/MgO and Li/Na/MgO catalysts promoted with SnO2 or Co3O4. At reaction temperatures < 700°C, the Li/Co/MgO ternary system showed marked differences in behaviour compared to the other ternary catalysts tested. This was particularly evident in the variation in C2 selectivity with time on stream during ageing studies of (i) untreated materials, (ii) materials pretreated in CO2, and (iii) materials dosed periodically with CHCI3. 相似文献
The oxidative coupling of methane (OCM) to higher hydrocarbons may eventually become an interesting alternative for the chemical utilization of natural gas. Extensive studies have been conducted since the works of Keller and Bhasin [l] and of Hinsen and Baerns [2]. 相似文献