首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5905篇
  免费   557篇
  国内免费   505篇
电工技术   659篇
综合类   389篇
化学工业   577篇
金属工艺   135篇
机械仪表   404篇
建筑科学   382篇
矿业工程   55篇
能源动力   226篇
轻工业   87篇
水利工程   99篇
石油天然气   120篇
武器工业   112篇
无线电   531篇
一般工业技术   1050篇
冶金工业   137篇
原子能技术   832篇
自动化技术   1172篇
  2024年   30篇
  2023年   76篇
  2022年   134篇
  2021年   157篇
  2020年   189篇
  2019年   167篇
  2018年   182篇
  2017年   248篇
  2016年   332篇
  2015年   242篇
  2014年   352篇
  2013年   513篇
  2012年   330篇
  2011年   529篇
  2010年   376篇
  2009年   341篇
  2008年   350篇
  2007年   405篇
  2006年   325篇
  2005年   282篇
  2004年   236篇
  2003年   199篇
  2002年   179篇
  2001年   113篇
  2000年   104篇
  1999年   89篇
  1998年   85篇
  1997年   54篇
  1996年   49篇
  1995年   44篇
  1994年   37篇
  1993年   26篇
  1992年   30篇
  1991年   20篇
  1990年   21篇
  1989年   35篇
  1988年   8篇
  1987年   10篇
  1986年   14篇
  1985年   10篇
  1984年   9篇
  1983年   6篇
  1982年   7篇
  1981年   2篇
  1980年   4篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   2篇
  1959年   10篇
排序方式: 共有6967条查询结果,搜索用时 15 毫秒
101.
基于蒙特卡洛方法的移动传感网节点定位优化算法   总被引:1,自引:0,他引:1  
无线传感器网络正在被应用到各种各样的监测环境中,在这些应用场景中,传感器节点的位置信息大都是至关重要的.目前对传感器节点定位方面的研究大都只针对静态WSN的情况,对于移动WSN节点定位的研究仍然十分有限.该文提出了移动WSN中节点间互相优化定位的新思路,通过判断式筛选出定位精度高的节点,并协助其他节点进行定位条件的优化.所提出的算法TSBMCL通过更精确的裁剪待定位节点的蒙特卡洛盒,并增加节点的粒子滤波条件来实现节点的精确定位.大规模的仿真结果表明,该算法可精确的锁定节点位置区域,高效的采样得到节点的位置样本,相比于传统的移动WSN蒙特卡洛定位方法,大大提高了节点的定位精度.  相似文献   
102.
We propose a novel algorithm, called REGGAE, for the generation of momenta of a given sample of particle masses, evenly distributed in Lorentz-invariant phase space and obeying energy and momentum conservation. In comparison to other existing algorithms, REGGAE is designed for the use in multiparticle production in hadronic and nuclear collisions where many hadrons are produced and a large part of the available energy is stored in the form of their masses. The algorithm uses a loop simulating multiple collisions which lead to production of configurations with reasonably large weights.

Program summary

Program title: REGGAE (REscattering-after-Genbod GenerAtor of Events)Catalogue identifier: AEJR_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJR_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 1523No. of bytes in distributed program, including test data, etc.: 9608Distribution format: tar.gzProgramming language: C++Computer: PC Pentium 4, though no particular tuning for this machine was performed.Operating system: Originally designed on Linux PC with g++, but it has been compiled and ran successfully on OS X with g++ and MS Windows with Microsoft Visual C++ 2008 Express Edition, as well.RAM: This depends on the number of particles which are generated. For 10 particles like in the attached example it requires about 120 kB.Classification: 11.2Nature of problem: The task is to generate momenta of a sample of particles with given masses which obey energy and momentum conservation. Generated samples should be evenly distributed in the available Lorentz-invariant phase space.Solution method: In general, the algorithm works in two steps. First, all momenta are generated with the GENBOD algorithm. There, particle production is modeled as a sequence of two-body decays of heavy resonances. After all momenta are generated this way, they are reshuffled. Each particle undergoes a collision with some other partner such that in the pair center of mass system the new directions of momenta are distributed isotropically. After each particle collides only a few times, the momenta are distributed evenly across the whole available phase space. Starting with GENBOD is not essential for the procedure but it improves the performance.Running time: This depends on the number of particles and number of events one wants to generate. On a LINUX PC with 2 GHz processor, generation of 1000 events with 10 particles each takes about 3 s.  相似文献   
103.
We describe QSATS, a parallel code for performing variational path integral simulations of the quantum mechanical ground state of monatomic solids. QSATS is designed to treat Boltzmann quantum solids, in which individual atoms are permanently associated with distinguishable crystal lattice sites and undergo large-amplitude zero-point motions around these sites. We demonstrate the capabilities of QSATS by using it to compute the total energy and potential energy of hexagonal close packed solid 4He at the density .

Program summary

Program title:QSATSCatalogue identifier: AEJE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 7329No. of bytes in distributed program, including test data, etc.: 61 685Distribution format: tar.gzProgramming language: Fortran 77.Computer: QSATS should execute on any distributed parallel computing system that has the Message Passing Interface (MPI) [1] libraries installed.Operating system: Unix or Linux.Has the code been vectorized or parallelized?: Yes, parallelized using MPI [1].RAM: The memory requirements of QSATS depend on both the number of atoms in the crystal and the number of replicas in the variational path integral chain. For parameter sets A and C (described in the long write-up), approximately 4.5 Mbytes and 12 Mbytes, respectively, are required for data storage by QSATS (exclusive of the executable code).Classification: 7.7, 16.13.External routines: Message Passing Interface (MPI) [1]Nature of problem: QSATS simulates the quantum mechanical ground state for a monatomic crystal characterized by large-amplitude zero-point motions of individual (distinguishable) atoms around their nominal lattice sites.Solution method: QSATS employs variational path integral quantum Monte Carlo techniques to project the system?s ground state wave function out of a suitably-chosen trial wave function.Restrictions: QSATS neglects quantum statistical effects associated with the exchange of identical particles. As distributed, QSATS assumes that the potential energy function for the crystal is a pairwise additive sum of atom–atom interactions.Additional comments: An auxiliary program, ELOC, is provided that uses the output generated by QSATS to compute both the crystal?s ground state energy and the expectation value of the crystal?s potential energy. End users can modify ELOC as needed to compute the expectation value of other coordinate-space observables.Running time: QSATS requires roughly 3 hours to run a simulation using parameter set A on a cluster of 12 Xeon processors with clock speed 2.8 GHz. Roughly 15 hours are needed to run a simulation using parameter set C on the same cluster.References:
  • [1] 
    For information about MPI, visit http://www.mcs.anl.gov/mpi/.
  相似文献   
104.
In this paper we explore ways to study the zero temperature limit of quantum statistical mechanics using Quantum Monte Carlo simulations. We develop a Quantum Monte Carlo method in which one fixes the ground state energy as a parameter. The Hamiltonians we consider are of the form H=H0+λV with ground state energy E. For fixed H0 and V, one can view E as a function of λ whereas we view λ as a function of E. We fix E and define a path integral Quantum Monte Carlo method in which a path makes no reference to the times (discrete or continuous) at which transitions occur between states. For fixed E we can determine λ(E) and other ground state properties of H.  相似文献   
105.
Graphs with large spectral gap are important in various fields such as biology, sociology and computer science. In designing such graphs, an important question is how the probability of graphs with large spectral gap behaves. A method based on multicanonical Monte Carlo is introduced to quantify the behavior of this probability, which enables us to calculate extreme tails of the distribution. The proposed method is successfully applied to random 3-regular graphs and large deviation probability is estimated.  相似文献   
106.
One of the most efficient non-perturbative methods for the calculation of thermal properties of quantum systems is the Hybrid Monte Carlo algorithm, as evidenced by its use in large-scale lattice quantum chromodynamics calculations. The performance of this algorithm is determined by the speed at which the fermion operator is applied to a given vector, as it is the central operation in the preconditioned conjugate gradient iteration. We study a simple implementation of these operations for the fermion matrix of the Hubbard model in d+1 spacetime dimensions, and report a performance comparison between a 2.66 GHz Intel Xeon E5430 CPU and an NVIDIA Tesla C1060 GPU using double-precision arithmetic. We find speedup factors ranging between 30 and 350 for d=1, and in excess of 40 for d=3. We argue that such speedups are of considerable impact for large-scale simulational studies of quantum many-body systems.  相似文献   
107.
We present an implementation of a stochastic optimization algorithm applied to location of atomic vacancies. Our method labels an empty point in space as a vacancy site, if the total spatial overlap of a “virtual sphere”, centered around the point, with the surrounding atoms (and other vacancies) falls below a tolerance parameter. A Metropolis-like algorithm displaces the vacancies randomly, using an “overlap temperature” parameter to allow for acceptance of moves into regions with higher overlap, thus avoiding local minima. Once the algorithm has targeted a point with low overlap, the overlap temperature is decreased, and the method works as a steepest descent optimization.Our method, with only two free parameters, is able to detect the correct number and coordinates of vacancies in a wide spectrum of condensed-matter systems, from crystals to amorphous solids, in fact in any given set of atomic coordinates, without any need of comparison with a reference initial structure.  相似文献   
108.
In this paper we revisit the computation and visualization of equivalents to isocontours in uncertain scalar fields. We model uncertainty by discrete random fields and, in contrast to previous methods, also take arbitrary spatial correlations into account. Starting with joint distributions of the random variables associated to the sample locations, we compute level crossing probabilities for cells of the sample grid. This corresponds to computing the probabilities that the well‐known symmetry‐reduced marching cubes cases occur in random field realizations. For Gaussian random fields, only marginal density functions that correspond to the vertices of the considered cell need to be integrated. We compute the integrals for each cell in the sample grid using a Monte Carlo method. The probabilistic ansatz does not suffer from degenerate cases that usually require case distinctions and solutions of ill‐conditioned problems. Applications in 2D and 3D, both to synthetic and real data from ensemble simulations in climate research, illustrate the influence of spatial correlations on the spatial distribution of uncertain isocontours.  相似文献   
109.
In this article, a new model predictive control approach to nonlinear stochastic systems will be presented. The new approach is based on particle filters, which are usually used for estimating states or parameters. Here, two particle filters will be combined, the first one giving an estimate for the actual state based on the actual output of the system; the second one gives an estimate of a control input for the system. This is basically done by adopting the basic model predictive control strategies for the second particle filter. Later in this paper, this new approach is applied to a CSTR (continuous stirred-tank reactor) example and to the inverted pendulum. These two examples show that our approach is also real-time-capable.  相似文献   
110.
We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s t and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号