首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37086篇
  免费   4287篇
  国内免费   2491篇
电工技术   895篇
综合类   2061篇
化学工业   8267篇
金属工艺   3193篇
机械仪表   1110篇
建筑科学   2474篇
矿业工程   816篇
能源动力   1405篇
轻工业   1527篇
水利工程   372篇
石油天然气   363篇
武器工业   475篇
无线电   4081篇
一般工业技术   13721篇
冶金工业   2031篇
原子能技术   355篇
自动化技术   718篇
  2024年   169篇
  2023年   897篇
  2022年   945篇
  2021年   1382篇
  2020年   1641篇
  2019年   1420篇
  2018年   1311篇
  2017年   1389篇
  2016年   1355篇
  2015年   1380篇
  2014年   2001篇
  2013年   2189篇
  2012年   2376篇
  2011年   3114篇
  2010年   2217篇
  2009年   2393篇
  2008年   2133篇
  2007年   2475篇
  2006年   2167篇
  2005年   2029篇
  2004年   1606篇
  2003年   1435篇
  2002年   1147篇
  2001年   846篇
  2000年   773篇
  1999年   532篇
  1998年   506篇
  1997年   351篇
  1996年   295篇
  1995年   228篇
  1994年   239篇
  1993年   169篇
  1992年   138篇
  1991年   134篇
  1990年   121篇
  1989年   104篇
  1988年   48篇
  1987年   32篇
  1986年   30篇
  1985年   21篇
  1984年   34篇
  1983年   19篇
  1982年   28篇
  1981年   8篇
  1980年   10篇
  1979年   3篇
  1976年   3篇
  1963年   2篇
  1955年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
31.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
32.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
33.
A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.  相似文献   
34.
The enzymatic conversion of lignins, possibly in combination with electrochemical oxidation, makes aromatics such as syringol, guaiacol, vanillin and catechol available in the qualities required by the fragrance industry. The lignins were obtained by soda digestion from wheat straw and Miscanthus, characterized and then converted with laccases. The overall yield amounted up to 9 wt % with a product spectrum confined to four substances. Catechol was the major product, with a fraction of ≈75 %. It can easily be isolated by extraction with acetone.  相似文献   
35.
36.
This paper presents an overview and examples of material design and development using (1) classical thermodynamics; (2) CALPHAD (calculation of phase diagrams) modeling; and (3) Integrated Computational Materials Engineering (ICME) approaches. Although the examples are given in lightweight aluminum and magnesium alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. The examples in this paper have demonstrated the effectiveness and limitations of classical thermodynamics in solving specific problems (such as nucleation during solidification and solid-state precipitation in aluminum alloys). Computational thermodynamics and CALPHAD modeling, when combined with critical experimental validation, have been used to guide the selection and design of new magnesium alloys for elevated-temperature applications. The future of material design and development will be based on a holistic ICME approach. However, key challenges exist in many aspects of ICME framework, such as the lack of diffusion/mobility databases for many materials systems, limitation of current microstructural modeling capability and integration tools for simulation codes of different length scales.  相似文献   
37.
Measuring nonlinear optical response of a specific material in a mixture, not only leads to investigate the behavior of a particular component in various circumstances, but also can be a way to select suitable combination and optimum concentration of additives and therefore obtaining the maximum nonlinear optical signals. In this work, by using dual-arm Z-scan technique, the nonlinear refractive index of Disperse Red1 (DR1) organic dye molecules inside the core of prepared polymeric nanocapsules was measured among various materials which prepared nanocapsules were made of them. Then the measured value was compared with nonlinear refractive index of DR1 solved in dichloromethane.  相似文献   
38.
To improve the electrochemical properties of rare-earth–Mg–Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the ...  相似文献   
39.
Thermogravimetric analysis of a coccolith-containing biogenic broth showed a three-step degradation process. According to this system behavior, the biogenic broth was heated to specific temperatures and characterized in terms of its morphology, surface chemistry, and crystallinity. The elemental and organic composition of the treated samples was also evaluated and compared to the reference material. The presented results were acquired in an effort to exploit pretreatment scenarios for such a biogenic system that would improve and support a separation process.  相似文献   
40.
This work aims at developing a new composite material based on nanosized semiconducting CuInS2 (CIS) particles combined with silicon nanowires grown on a silicon substrate (SiNWs/Si) for photoelectrochemical (PEC)-splitting of water. The CIS particles were prepared via a colloidal method using N-methylimidazole (NMI) as the solvent and an annealing treatment. The SiNWs were obtained by chemical etching of silicon (100) substrates assisted by a metal. The CIS/SiNWs/Si composite material was obtained by deposition of an aliquot of a suspension of CIS particles onto the SiNWs/Si substrate, using spin coating followed by a drying step. The XRD pattern demonstrated that CuInS2 grows in the tetragonal/chalcopyrite phase, while SiNWs/Si presents a cubic structure. The SEM images show semi-spherical particles (~10 nm) distributed on the surface of silicon nanowires (~10 μm). The EIS measurements reveal n-type conductivity for CIS, SiNWs/Si and CIS/SiNWs/Si materials, which could favour the oxidation reaction of water molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号