首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   0篇
综合类   2篇
化学工业   112篇
金属工艺   2篇
机械仪表   2篇
建筑科学   26篇
矿业工程   1篇
能源动力   8篇
轻工业   17篇
水利工程   1篇
石油天然气   10篇
一般工业技术   58篇
冶金工业   2篇
原子能技术   1篇
自动化技术   2篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   7篇
  2018年   9篇
  2017年   5篇
  2016年   3篇
  2015年   5篇
  2014年   17篇
  2013年   21篇
  2012年   7篇
  2011年   17篇
  2010年   10篇
  2009年   27篇
  2008年   24篇
  2007年   14篇
  2006年   14篇
  2005年   8篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   8篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1990年   1篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
21.
Mingfei Zhao 《Desalination》2009,249(1):331-203
The modified expanded graphite (MEG) powder was used as a porous adsorbent for the removal of the cationic dye, methylene blue (MB), from aqueous solutions. The dye adsorption experiments were carried out with the bath procedure. Experimental results showed that the basic pH, increasing initial dye concentration and high temperature favored the adsorption. The dye adsorption equilibrium was attained rapidly after 5 min of contact time. Experimental data related to the adsorption of MB on the MEG under different conditions were applied to the pseudo-first-order equation, the pseudo-second-order equation and the intraparticle diffusion equation, and the rate constants of first-order adsorption (k1), the rate constants of second-order adsorption (k2) and intraparticle diffusion rate constants (kint) were calculated, respectively. The experimental data fitted very well in the pseudo-second-order kinetic model. The thermodynamic parameters of activation such as Gibbs free energy, enthalpy, and entropy were also evaluated. The results indicated that the MEG powder could be employed as an efficient adsorbent for the removal of textile dyes from effluents.  相似文献   
22.
In the present study a low-cost waste biomass derived from canned food plant, was tested for its ability to remove reactive textile dye from aqueous solutions. The batch biosorption experiments were carried out at various pH, biosorbent dosage, contact time and temperature. Optimum decolorization was observed at pH 2.0 and 1.6 g dm− 3 of biomass dosage within 20 min. The first-order and the pseudo-second-order kinetics were investigated for the biosorption system. The applicability of the Langmuir and Freundlich isotherm models was examined. The thermodynamic parameters for the biosorption were also calculated. The experimental results in this study indicated that this low-cost biomaterial was an attractive candidate for the removal of textile dye Reactive Red 198 (RR198) from aqueous solutions.  相似文献   
23.
In single component system, the adsorption of Cr(VI) and As(III) increase with contact time. Solution pH is found influencing the adsorption. Cr(VI) removal is found to be maximum (98%) at pH = 2. While, As(III) removal is found to be maximum at pH = 6 (77.2%). The adsorption capacity of Cr(VI) is greater than that of As(III) in single component system. Several adsorption isotherms were used to fit the equilibrium data. The adsorption kinetic data of Cr(VI) and As(III) were analyzed and is found fitting well in a pseudo-second-order equation both in single and binary systems. In binary system, the adsorption of As(III) is generally higher than that in single system. The pseudo-second-order rate constant k2 is 0.5037 g/mg min in binary system larger than 0.0782 g/mg min in single system. However, the presence of As(III) in solution does not significantly influence the capacity of Cr(VI) adsorption on coaly activated carbon (CAC). The complexation between Cr(VI) and As(III) influence the adsorption, resulting in increased adsorption of As(III). The complexation structure of As(III), Cr(VI) and CAC was proposed as A-Cr(VI)-As(III) (A represents the adsorption site on the CAC).  相似文献   
24.
The biomass of terrestrial-plant materials has high removal capacities for a number of heavy metal ions. The Ni(II) biosorption capacity of the cone biomass of Thuja orientalis was studied in the batch mode. The biosorption equilibrium level was determined as a function of contact time, pH, temperature, agitation speed at several initial metal ion and adsorbent concentrations. The removal of Ni(II) from aqueous solutions increased with adsorbent concentration, temperature and agitation speed of the solution were increased. The biosorption process was very fast; 90% of biosorption occurred within 3 min and equilibrium was reached at around 7 min. It is found that the biosorption of Ni(II) on the cone biomass was correlated well (R2 > 0.99) with the Langmuir equation as compared to Freundlich, BET Temkin and D-R isotherm equation under the concentration range studied. According to Langmuir isotherm, the monolayer saturation capacity (Q(o)) is 12.42 mg g(-1). The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to test the experimental data for initial Ni(II) and cone biomass concentrations. The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. The activation energy of biosorption (E(a)) was determined as 36.85 kJ mol(-1) using the Arrhenius equation. This study indicated that the cone biomass of T. orientalis can be used as an effective and environmentally friendly adsorbent for the treatment of Ni(II) containing aqueous solutions.  相似文献   
25.
An Australian natural zeolite was collected, characterised and employed for basic dye adsorption in aqueous solution. The natural zeolite is mainly composed of clinoptiloite, quartz and mordenite and has cation-exchange capacity of 120 meq/100g. The natural zeolite presents higher adsorption capacity for methylene blue than rhodamine B with the maximal adsorption capacity of 2.8 x 10(-5) and 7.9 x 10(-5)mol/g at 50 degrees C for rhodamine B and methylene blue, respectively. Kinetic studies indicated that the adsorption followed the pseudo second-order kinetics and could be described as two-stage diffusion process. The adsorption isotherm could be fitted by the Langmuir and Freundlich models. Thermodynamic calculations showed that the adsorption is endothermic process with Delta H(0) at 2.0 and 8.7 kJ/mol for rhodamine B and methylene blue. It has also found that the regenerated zeolites by high-temperature calcination and Fenton oxidation showed similar adsorption capacity but lower than the fresh sample. Only 60% capacity could be recovered by the two regeneration techniques.  相似文献   
26.
Removal of 4-chlorophenol (4-CP) from synthetic aqueous solutions through adsorption on Amberlite XAD-4 resin, a non-ionic macroreticular resins, under batch equilibrium experimental conditions at 298, 308 and 318K was investigated. It is necessary to propose a suitable model to a better understanding on the mechanism of 4-CP adsorption. For this purpose, Langmiur, Freundlich, Toth, and Redlich-Peterson (RP) isotherm models were compared. The two and three parameters in the adopted adsorption isotherm models were determined by the help of MATLAB package program. It was determined that best fitted adsorption isotherm models were obtained to be in the order: Redlich-Peterson>Langmuir>Toth>Freundlich isotherms. The pseudo-second-order kinetic model provided the best correlation to the experimental results. Results of the intra-particle diffusion model show that the pore diffusion is not the only rate limiting step. The lower correlation of the data to the Bangham's equation also represents that the diffusion of the adsorbate into pores of the sorbent is not the only rate-controlling step. The thermodynamic constants of adsorption phenomena; DeltaG degrees, DeltaH degrees, and DeltaS degrees were found as -4.17 (at 298K) kJ/mol, -42.01 kJ/mol, and -0.127 kJ/(mol K), respectively. The results showed that adsorption of 4-CP on Amberlite XAD-4, a nonionic polymeric resin was exothermic and spontaneous.  相似文献   
27.
The objective of this study is to remove the congo red (CR) anionic dye, from water by using the acid activated red mud in batch adsorption experiments. The effects of contact time, pH, adsorbent dosage and initial dye concentration on the adsorption were investigated. The pH of the dye solution strongly affected the chemistry of both the dye molecules and activated red mud in an aqueous solution. The effective pH was 7.0 for adsorption on activated red mud. It was found that the sufficient time to attain equilibrium was 90 min. The adsorption isotherms were analyzed using the Langmuir, the Freundlich, and the three parameter Redlich-Peterson isotherms. The Langmuir isotherm was the best-fit adsorption isotherm model for the experimental data obtained from the non-linear chi-square statistic test.  相似文献   
28.
The most important measurement made on a new hydrogen storage material is the pressure–composition isotherm that captures the storage conditions and the amount of hydrogen stored. The most popular experimental approach for constructing such isotherms is the Sieverts technique, in which the amount of hydrogen absorbed or desorbed by the sample is inferred from measurements of the hydrogen pressure in a stepwise procedure. An in-depth discussion of the factors contributing to good performance is presented, based on a model of the sensitivity of the Sieverts manifold to changes in hydrogen uptake. Quantification of satisfactory performance may be achieved through a Figure of Merit for the apparatus in combination with the sample to be measured. The Figure of Merit is derived for the general case of a Sieverts apparatus in which the constituent volumes are not at the same temperature, and related to the supposed maximum amount of hydrogen taken up by the sample. The analysis confirms that (i) low sample temperature and high sample molar volume pose challenges for authoritative measurements and (ii) tests with a dense sample like LaNi5 do not validate a Sieverts manifold for accurate measurements with high-surface-area adsorbers such as carbons and metal-organic frameworks. The calculation of a Figure of Merit for a proposed experiment provides an indication of the expected accuracy of the results, as well as scope to vary quantities such as the amount of sample in order to improve the Figure of Merit. In addition, a procedure for devising an optimised experiment is proposed, based on the reference and sample volumes of the Sieverts manifold being configurable.  相似文献   
29.
This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution.  相似文献   
30.
The use of a new activated carbon developed from date palm seed wastes, generated in the jam industry, for removing toxic chromium from aqueous solution has been investigated. The activated carbon has been achieved from date palm seed by dehydrating methods using concentrated sulfuric acid. The batch experiments were conducted to determine the adsorption capacity of the biomass. The effect of initial metal concentration (25-125mgl(-1)), pH, contact time, and concentration of date palm seed carbon have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increase as pH value decrease and the optimum pH value is pH 1.0. Kinetics and adsorption equilibrium were studied at different sorbent doses. The adsorption process was fast and the equilibrium was reached within 180min. The maximum removal was 100% for 75mgl(-1) of Cr(+ concentration on 4gl(-1) carbon concentration and the maximum adsorption capacity was 120.48mgg(-1). The kinetic data were analyzed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Koble-Corrigan, Redlich-Peterson, Tempkin, Dubinin-Radushkevich and Generalized isotherm equations. The Elovich equation and pseudo-second order equation provide the greatest accuracy for the kinetic data and Koble-Corrigan and Langmuir models the closest fit for the equilibrium data. Activation energy of sorption has also been evaluated as 0.115 and 0.229kJmol(-1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号