首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2209篇
  免费   250篇
  国内免费   122篇
电工技术   305篇
技术理论   1篇
综合类   183篇
化学工业   415篇
金属工艺   296篇
机械仪表   25篇
建筑科学   75篇
矿业工程   37篇
能源动力   164篇
轻工业   38篇
水利工程   2篇
石油天然气   13篇
武器工业   6篇
无线电   276篇
一般工业技术   532篇
冶金工业   90篇
原子能技术   102篇
自动化技术   21篇
  2024年   19篇
  2023年   117篇
  2022年   59篇
  2021年   121篇
  2020年   105篇
  2019年   130篇
  2018年   93篇
  2017年   115篇
  2016年   99篇
  2015年   83篇
  2014年   124篇
  2013年   145篇
  2012年   121篇
  2011年   140篇
  2010年   112篇
  2009年   135篇
  2008年   95篇
  2007年   131篇
  2006年   95篇
  2005年   85篇
  2004年   45篇
  2003年   60篇
  2002年   64篇
  2001年   46篇
  2000年   48篇
  1999年   43篇
  1998年   26篇
  1997年   27篇
  1996年   17篇
  1995年   15篇
  1994年   11篇
  1993年   5篇
  1992年   9篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
  1986年   8篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1951年   1篇
排序方式: 共有2581条查询结果,搜索用时 15 毫秒
11.
超声共沉淀法合成锂离子电池正极材料   总被引:1,自引:1,他引:1  
采用超声共沉淀法,合成尖晶石型掺杂锰酸锂Li1.05Co0.10Ni0.10Mn1.80O4前驱体,并使用三段热处理方式,制备出尖晶石产物。用粒度分布、XRD、SEM、EDS及电化学性能测试等对其进行表征。结果表明:与未处理试样相比,超声共沉淀法制备的产物的粒度分布变窄,体积比表面积由7.0116m2/cm3缩小至6.9789m2/cm3,晶格常数从0.822nm缩小至0.821nm,晶粒尺寸从67.41nm减小至57.78nm,晶形更加完整,颗粒均匀性更好。经装配成电池测定电化学性能,其充放电平台增长,比容量加大,循环性能更优越。  相似文献   
12.
陈曦 《科普研究》2007,2(5):67-73
北京天文馆是新中国成立后我国建设的第一座大型科普活动专用场馆,落成于1957年9月29日,将在今年9月29日迎来50周岁生日。在北京天文馆50周年大庆到来之际,作者整合了天文馆建设事业元老李元先生和陈遵妫先生的回忆资料,并就天文馆建设事宜采访了李元先生。本文从建馆计划的提出、筹建工作的实施、命名之争、选址和设计等方面,详实地再现了北京天文馆的创建历史。  相似文献   
13.
目前大多数据采集系统采用220V交流电源供电,而在实时性要求高的场合则采用交流电源作为主电源并且蓄电池作为备用电源的双电源系统进行供电,以防止由于交流电源的突然断开而造成数据采集系统的数据丢失。针对220V交流电源供电系统以及交直流双电源供电系统中存在的问题和缺陷,介绍了多节锂电充电控制器MAX1873的特点和充电控制方法,以及利用MAX1873构成的锂电市电双电源供电系统的详细设计方法和设计调试中应注意的问题。  相似文献   
14.
All-solid-state Li batteries (ASSLBs) with solid-polymer electrolytes are considered promising battery systems to achieve improved safety and high energy density. However, Li dendrite formation at the Li anode under high charging current density/capacity has limited their development. To tackle the issue, Li-metal alloying has been proposed as an alternative strategy to suppress Li dendrite growth in ASSLBs. One drawback of alloying is the relatively lower operating cell voltages, which will inevitably lower energy density compared to cells with pure Li anode. Herein, a Li-rich Li13In3 alloy electrode (LiRLIA) is proposed, where the Li13In3 alloy scaffold guides Li nucleation and hinders Li dendrite formation. Meanwhile, the free Li can recover Li's potential and facilitate fast charge transfer kinetics to realize high-energy-density ASSLBs. Benefitting from the stronger adsorption energy and lower diffusion energy barrier of Li on a Li13In3 substrate, Li prefers to deposit in the 3D Li13In3 scaffold selectively. Therefore, the Li–Li symmetric cell constructed with LiRLIA can operate at a high current density/capacity of 5 mA cm−2/5 mAh cm−2 for almost 1000 h.  相似文献   
15.
The reaction kinetics at a triple-phase boundary (TPB) involving Li+, e, and O2 dominate their electrochemical performances in Li–O2 batteries. Early studies on catalytic activities at Li+/e/O2 interfaces have enabled great progress in energy efficiency; however, localized TPBs within the cathode hamper innovations in battery performance toward commercialization. Here, the effects of homogenized TPBs on the reaction kinetics in air cathodes with structurally designed pore networks in terms of pore size, interconnectivity, and orderliness are explored. The diffusion fluxes of reactants are visualized by modeling, and the simulated map reveals evenly distributed reaction areas within the periodic open structure. The 3D air cathode provides highly active, homogeneous TPBs over a real electrode scale, thus simultaneously achieving large discharge capacity, unprecedented energy efficiency, and long cyclability via mechanical/electrochemical stress relaxation. Homogeneous TPBs by cathode structural engineering provide a new strategy for improving the reaction kinetics beyond controlling the intrinsic properties of the materials.  相似文献   
16.
Lithium–sulfur batteries are promising energy‐storage devices because of their high theoretical energy densities. For practical Li–S batteries, reducing the amount of electrolyte used is essential for achieving the high energy densities. However, reducing the electrolyte amount leads to severe performance degradation, mainly because of sluggish deposition of discharge products (Li2S) and the accompanying passivation issue that arise from the insulating nature of Li2S. In this study, a lightweight, robust interlayer, with a 3D open structure and a low surface area is designed and fabricated. The structure facilitates electrolyte infiltration without trapping too much electrolyte. Moreover, the electrocatalytic Co nanoparticles embedded in the skeleton surface within the interlayer effectively promote Li ion diffusion, polysulfides conversion, and Li2S deposition, and therefore enhance the electrochemical kinetics under lean electrolyte conditions. The mechanisms involved in the interlayer effects are investigated by microstructural characterizations, electrochemical performance tests, density functional theory calculations, and in situ X‐ray diffraction characterization. These results show the feasibility of using an interlayer strategy to improve the electrochemical performances of Li–S batteries under lean electrolyte conditions to potentially increase the practical energy densities of Li–S batteries.  相似文献   
17.
18.
Li2O-ZnO-SiO2系结晶型低熔点封接玻璃的研究   总被引:2,自引:0,他引:2  
研制了一种用于与软质玻璃和金属合金封接、以Li2O-ZnO-SiO2为基础的三元系结晶性低熔点玻璃焊料.通过不同的热处理制度以及DSC,纽扣试验等分析手段,对该体系焊料玻璃进行了研究.结果表明,玻璃焊料在600~640℃的流散性良好,能与金属合金、平板玻璃封接.同时探讨了封接温度、封接时间、金属合金预处理的程度以及保护气氛等工艺参数对封接质量的影响.  相似文献   
19.
Lithium dendrites caused by nonuniform Li+ flux leads to the capacity fade and short-circuit hazard of lithium metal batteries. The solid electrolyte interface (SEI) is critical to the uniformity of Li+ flux. Here, an ultrafast preparation of uniform and vertical Cu7S4 nano-flake arrays (Cu7S4 NFAs) on the Cu substrate is reported. These arrays can largely improve the lithiophilicity of the anode and form Li2S-enriched SEI due to the electrochemical reduction of Cu7S4 NFAs with lithium. A further statistical analysis suggests that the SEI, with a higher content of Li2S, is more effective to inhibit the formation of lithium dendrites and yields less dead lithium. A quite stable coulombic efficiency of 98.6% can be maintained for 400 cycles at 1 mA cm–2. Furthermore, at negative to positive electrode capacity ratio of 1.5 (N/P = 1.5), the full battery of Li@Cu7S4 NFAs||S shows 83% capacity retention after 100 cycles at 1 C, much higher than that of Li@Cu||S (33%). The findings demonstrate that high Li2S content in the SEI is crucial for the dendrite inhibition to achieve better electrochemical performance.  相似文献   
20.
Lithium (Li) metal is regarded as the most attractive anode material for high‐energy Li batteries, but it faces unavoidable challenges—uncontrollable dendritic growth of Li and severe volume changes during Li plating and stripping. Herein, a porous carbon framework (PCF) derived from a metal–organic framework (MOF) is proposed as a dual‐phase Li storage material that enables efficient and reversible Li storage via lithiation and metallization processes. Li is electrochemically stored in the PCF upon charging to 0 V versus Li/Li+ (lithiation), making the PCF surface more lithiophilic, and then the formation of metallic Li phase can be induced spontaneously in the internal nanopores during further charging below 0 V versus Li/Li+ (metallization). Based on thermodynamic calculations and experimental studies, it is shown that atomically dispersed zinc plays an important role in facilitating Li plating and that the reversibility of Li storage is significantly improved by controlled nanostructural engineering of 3D porous nanoarchitectures to promote the uniform formation of Li. Moreover, the MOF‐derived PCF does not suffer from macroscopic volume changes during cycling. This work demonstrates that the nanostructural engineering of porous carbon structures combined with lithiophilic element coordination would be an effective approach for realizing high‐capacity, reversible Li‐metal anodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号