首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学工业   6篇
建筑科学   8篇
  2023年   1篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2006年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
11.
Lee CO  Howe KJ  Thomson BM 《Water research》2012,46(4):1005-1014
This pilot-scale research project investigated and compared the removal of pharmaceuticals and personal care products (PPCPs) and other micropollutants from treated wastewater by ozone/biofiltration and reverse osmosis (RO). The reduction in UV254 absorbance as a function of ozone dose correlated well with the reduction in nonbiodegradable dissolved organic carbon and simultaneous production of biodegradable dissolved organic carbon (BDOC). BDOC analyses demonstrated that ozone does not mineralize organics in treated wastewater and that biofiltration can remove the organic oxidation products of ozonation. Biofiltration is recommended for treatment of ozone contactor effluent to minimize the presence of unknown micropollutant oxidation products in the treated water. Ozone/biofiltration and RO were compared on the basis of micropollutant removal efficiency, energy consumption, and waste production. Ozone doses of 4-8 mg/L were nearly as effective as RO for removing micropollutants. When wider environmental impacts such as energy consumption, water recovery, and waste production are considered, ozone/biofiltration may be a more desirable process than RO for removing PPCPs and other trace organics from treated wastewater.  相似文献   
12.
Onesios KM  Bouwer EJ 《Water research》2012,46(7):2365-2375
Pharmaceuticals and personal care products (PPCPs) have been detected in bodies of water worldwide, yet their effects on the environment are not fully understood. Recent toxicity studies suggest that mixtures of PPCPs at low concentrations may be detrimental to exposed organisms, highlighting the need to remove PPCPs from wastewater treatment plant effluent before it is discharged to the environment. In this study, the utility of biofilm-based PPCP removal as a means to prevent environmental PPCP contamination was investigated. The removal of 14 PPCPs, each at an initial concentration of 10 μg/L, was studied in laboratory sand columns inoculated with wastewater treatment plant effluent. The examined PPCPs included biosol, biphenylol, p-chloro-m-cresol, p-chloro-m-xylenol, chlorophene, sodium diclofenac, gabapentin, gemfibrozil, 5-fluorouracil, ibuprofen, ketoprofen, naproxen, triclosan, and valproic acid. Ten of the PPCPs were removed by greater than 95% during column passage, while the four other compounds proved more recalcitrant. The effect of the concentration (either 50 or 1000 μg/L) of an easily degradable primary substrate (acetate) supplied along with the mixture of PPCPs was examined. Most of the tested PPCPs were removed consistently by the biofilms regardless of the concentration of acetate, although the extent of removal for three compounds showed dependence on acetate concentration, and two behaved with no reproducible pattern over time. Biofilm protein measurements indicated that the mixture of PPCPs supplied to columns suppressed biofilm growth, suggesting toxicity of the PPCPs to the biofilm communities. This laboratory-scale experiment suggests that biofilm-based water treatment strategies, such as soil aquifer treatment and slow sand filtration, may be well-suited for the removal of many PPCPs from impacted water.  相似文献   
13.
A simulation program is described, tested and used, to predict micropollutant removal in an ozonation bubble tower with or without hydrogen peroxide addition. To compute the removal efficiency, we need to know the chemical reactivity between organic compounds and oxidant species (molecular ozone and hydroxyl radicals), the ozone mass transfer from the gaseous phase to the liquid phase (kLa) and the hydrodynamic model describing the reactor. In this case, we divide the reactor into three parts (water arrival, air arrival and intermediate zones). Each part is modelled using completely stirred tank reactors in series (CSTR).

In each CSTR, the calculation of oxidant concentrations (O3, H2O2) is made through mass balance equations and a semi-empirical formula which gives hydroxyl radical concentrations as a function both of ozone concentration and the main characteristics of the water to be treated (pH, TOC, alkalinity). Another semi-empirical formula links ozone consumption to the same characteristics.  相似文献   

14.
Incomplete removal of micropollutants in wastewater treatment leads to contamination of the aquatic environment. Mixed-matrix membranes with different shares of embedded adsorbents are considered promising for the elimination of commonly found pharmaceuticals. However, their ideal geometry and reusability after a loading cycle remain uncertain. In this study, the life cycle of loaded membranes could be extended through chemical regeneration with ethanol at different temperatures. Moreover, membrane stability and adsorbent-to-membrane-area ratio could be enhanced through a seven-bore geometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号