首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   47篇
  国内免费   13篇
电工技术   2篇
综合类   19篇
建筑科学   11篇
矿业工程   13篇
能源动力   7篇
轻工业   11篇
水利工程   50篇
无线电   12篇
一般工业技术   2篇
冶金工业   1篇
原子能技术   1篇
自动化技术   273篇
  2024年   2篇
  2023年   3篇
  2022年   12篇
  2021年   12篇
  2020年   9篇
  2019年   16篇
  2018年   16篇
  2017年   17篇
  2016年   13篇
  2015年   16篇
  2014年   9篇
  2013年   20篇
  2012年   22篇
  2011年   35篇
  2010年   27篇
  2009年   36篇
  2008年   29篇
  2007年   26篇
  2006年   27篇
  2005年   22篇
  2004年   13篇
  2003年   12篇
  2002年   2篇
  2001年   1篇
  1986年   5篇
排序方式: 共有402条查询结果,搜索用时 31 毫秒
11.
The aim of this study was to evaluate the use of ground-based canopy reflectance measurements to detect changes in physiology and structure of vegetation in response to experimental warming and drought treatment at six European shrublands located along a North-South climatic gradient. We measured canopy reflectance, effective green leaf area index (green LAIe) and chlorophyll fluorescence of dominant species. The treatment effects on green LAIe varied among sites. We calculated three reflectance indices: photochemical reflectance index PRI [531 nm; 570 nm], normalized difference vegetation index NDVI680 [780 nm; 680 nm] using red spectral region, and NDVI570 [780 nm; 570 nm] using the same green spectral region as PRI. All three reflectance indices were significantly related to green LAIe and were able to detect changes in shrubland vegetation among treatments. In general warming treatment increased PRI and drought treatment reduced NDVI values. The significant treatment effect on photochemical efficiency of plants detected with PRI could not be detected by fluorescence measurements. However, we found canopy level measured PRI to be very sensitive to soil reflectance properties especially in vegetation areas with low green LAIe. As both soil reflectance and LAI varied between northern and southern sites it is problematic to draw universal conclusions of climate-derived changes in all vegetation types based merely on PRI measurements. We propose that canopy level PRI measurements can be more useful in areas of dense vegetation and dark soils.  相似文献   
12.
In order to obtain high quality data, the correction of atmospheric perturbations acting upon land surface reflectance measurements recorded by a space-based sensor is an important topic within remote sensing. For many years the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer model and the Simplified Method for Atmospheric Correction (SMAC) codes have been used for this atmospheric correction, but previous studies have shown that in a number of situations the quality of correction provided by the SMAC is low. This paper describes a method designed to improve the quality of the SMAC atmospheric correction algorithm through a slight increase in its computational complexity. Data gathered from the SEVIRI aboard Meteosat Second Generation (MSG) is used to validate the additions to SMAC, both by comparison to simulated data corrected using the highly accurate 6S method and by comparison to in-situ and 6S corrected SEVIRI data gathered for two field sites in Africa. The additions to the SMAC are found to greatly increase the quality of atmospheric correction performed, as well as broaden the range of atmospheric conditions under which the SMAC can be applied. When examining the Normalised Difference Vegetation Index (NDVI), the relative difference between SMAC and in-situ values decreases by 1.5% with the improvements in place. Similarly, the mean relative difference between SMAC and 6S reflectance values decreases by a mean of 13, 14.5 and 8.5% for Channels 1, 2 and 3 respectively. Furthermore, the processing speed of the SMAC is found to remain largely unaffected, with only a small increase in the time taken to process a full SEVIRI scene. Whilst the method described within this paper is only applicable to SEVIRI data, a similar approach can be applied to other data sources than SEVIRI, and should result in a similar accuracy improvement no matter which instrument supplies the original data.  相似文献   
13.
Impacts of global climate change are expected to result in greater variation in the seasonality of snowpack, lake ice, and vegetation dynamics in southwest Alaska. All have wide-reaching physical and biological ecosystem effects in the region. We used Moderate Resolution Imaging Spectroradiometer (MODIS) calibrated radiance, snow cover extent, and vegetation index products for interpreting interannual variation in the duration and extent of snowpack, lake ice, and vegetation dynamics for southwest Alaska. The approach integrates multiple seasonal metrics across large ecological regions.Throughout the observation period (2001-2007), snow cover duration was stable within ecoregions, with variable start and end dates. The start of the lake ice season lagged the snow season by 2 to 3 months. Within a given lake, freeze-up dates varied in timing and duration, while break-up dates were more consistent. Vegetation phenology varied less than snow and ice metrics, with start-of-season dates comparatively consistent across years. The start of growing season and snow melt were related to one another as they are both temperature dependent. Higher than average temperatures during the El Niño winter of 2002-2003 were expressed in anomalous ice and snow season patterns. We are developing a consistent, MODIS-based dataset that will be used to monitor temporal trends of each of these seasonal metrics and to map areas of change for the study area.  相似文献   
14.
Topography and accuracy of image geometric registration significantly affect the quality of satellite data, since pixels are displaced depending on surface elevation and viewing geometry. This effect should be corrected for through the process of accurate image navigation and orthorectification in order to meet the geolocation accuracy for systematic observations specified by the Global Climate Observing System (GCOS) requirements for satellite climate data records. We investigated the impact of orthorectification on the accuracy of maximum Normalized Difference Vegetation Index (NDVI) composite data for a mountain region in north-western Canada at various spatial resolutions (1 km, 4 km, 5 km, and 8 km). Data from AVHRR on board NOAA-11 (1989 and 1990) and NOAA-16 (2001, 2002, and 2003) processed using a system called CAPS (Canadian AVHRR Processing System) for the month of August were considered. Results demonstrate the significant impact of orthorectification on the quality of composite NDVI data in mountainous terrain. Differences between orthorectified and non-orthorectified NDVI composites (ΔNDVI) adopted both large positive and negative values, with the 1% and 99% percentiles of ΔNDVI at 1 km resolution spanning values between − 0.16 < ΔNDVI < 0.09. Differences were generally reduced to smaller numbers for coarser resolution data, but systematic positive biases for non-orthorectified composites were obtained at all spatial resolutions, ranging from 0.02 (1 km) to 0.004 (8 km). Analyzing the power spectra of maximum NDVI composites at 1 km resolution, large differences between orthorectified and non-orthorectified AVHRR data were identified at spatial scales between 4 km and 10 km. Validation of NOAA-16 AVHRR NDVI with MODIS NDVI composites revealed higher correlation coefficients (by up to 0.1) for orthorectified composites relative to the non-orthorectified case. Uncertainties due to the AVHRR Global Area Coverage (GAC) sampling scheme introduce an average positive bias of 0.02 ± 0.03 at maximum NDVI composite level that translates into an average relative bias of 10.6% ± 19.1 for sparsely vegetated mountain regions. This can at least partially explain the systematic average positive biases we observed relative to our results in AVHRR GAC-based composites from the Global Inventory Modeling and Mapping Studies (GIMMS) and Polar Pathfinder (PPF) datasets (0.19 and 0.05, respectively). With regard to the generation of AVHRR long-term climate data records, results suggest that orthorectification should be an integral part of AVHRR pre-processing, since neglecting the terrain displacement effect may lead to important biases and additional noise in time series at various spatial scales.  相似文献   
15.
This work extends the previous study of Trishchenko et al. [Trishchenko, A. P., Cihlar, J., & Li, Z. (2002). Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sensing of Environment 81 (1), 1-18] that analyzed the spectral response function (SRF) effect for the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA satellites NOAA-6 to NOAA-16 as well as the Moderate Resolution Imaging Spectroradiometer (MODIS), the VEGETATION sensor (VGT) and the Global Imager (GLI). The developed approach is now applied to cover three new AVHRR sensors launched in recent years on NOAA-17, 18, and METOP-A platforms. As in the previous study, the results are provided relative to the reference sensor AVHRR NOAA-9. The differences in reflectance among these three radiometers relative to the AVHRR NOAA-9 are similar to each other and range from − 0.015 to 0.015 (− 20% to + 2% relative) for visible (red) channel, and from − 0.03 to 0.02 (− 5% to 5%) for the near infrared (NIR) channel. The absolute change in the Normalized Difference Vegetation Index (NDVI) ranged from − 0.03 to + 0.06. Due to systematic biases of the visible channels toward smaller values and the NIR channels toward slightly larger values, the overall systematic biases for NDVI are positive. The polynomial approximations are provided for the bulk spectral correction with respect to the AVHRR NOAA-9 for consistency with previous study. Analysis was also conducted for the SRF effect only among the AVHRR-3 type of radiometer on NOAA-15, 16, 17, 18 and METOP-A using AVHRR NOAA-18 as a reference. The results show more consistency between sensors with typical correction being under 5% (or 0.01 in absolute values). The AVHRR METOP-A reveals the most different behavior among the AVHRR-3 group with generally positive bias for visible channel (up to + 5%, relative), slightly negative bias for the NIR channel (1%-2% relative), and negative NDVI bias (− 0.02 to + 0.005). Polynomial corrections are also suggested for normalization of AVHRR on NOAA-15, 16, 17 and METOP-A to AVHRR NOAA-18.  相似文献   
16.
基于融合NDVI和EVI时间序列的遥感影像分类研究   总被引:1,自引:1,他引:0  
朱满  胡光宇  于之峰 《遥感信息》2009,(5):44-46,66
通过比较分析发现同一地物的NDVI和EVI时间序列变化规律具有一定差异,据此,提出结合NDVI和EVI植被指数时间序列的分类方法,结果表明比单独使用NDVI或EVI时间序列总体精度要提高2.7%,kappa系数提高0.04。  相似文献   
17.
A recurrent floating green algae bloom was detected in the Yellow Sea since 2007.The Ulva.prolifera is non\|toxic,but the massive accumulations can result in significant environmental damage and cause economic loss to marine industries.In this study,the spatial and temporal patterns of Ulva.prolifera green tides were investigated in the Yellow Sea during 2015 using HJ\|1A/1B and MODIS satellite images by means of NDVI (normalized difference vegetation index)and artificial interpretation.The results showed:(1)A little Ulva.prolifera was discovered firstly in adjacent sea of Yancheng,Jiangsu province in early May with distribution area 0.831 km2.Under the action of the southeast monsoon,Ulva.prolifera was gradually drifted to Shandong peninsula waters from south to north.The influential area and range reached a peak value with 1 752.756 km2 in late June,and gradually subsided from July to August.And Ulva.prolifera about 38.791 km2 was monitored in the South Bay of North Korea.In conclusion,Ulva.prolifera in the Yellow Sea in 2015 has experienced five major processes including “Occur\|Development\|Outbreak\|Recession\|Disappeared”.(2)Typhoon "CHAN\|HOM" certainly influenced the northward pathway of Ulva.prolifera and shifted towards the southwest,resulting in most of Ulva.prolifera moved to the east coast of Lianyungang,and speculated that minority Ulva.prolifera drifted to the South Bay of North Korea.(3)From the monitoring data,the spatial resolution between MODIS and ENVISAT (HJ\|1A / 1B)is difference significantly,250 m and 30 m respectively.A functional relation of the two data with monitoring area difference about 2.26 times was established to make up for the shortage of the environmental satellite (HJ\|1A/1B)images.   相似文献   
18.
环境小卫星可实现中小湖泊蓝藻动态监测,但不同大气校正方法对于相同影像的处理结果有很大差异。研究利用多种大气校正方法对环境小卫星影像进行辐射校正处理,利用多个感兴趣区的全局和局部特征以及多个统计量对处理结果进行分析,比较其在蓝藻动态监测中的作用。基于多光谱植被指数计算蓝藻生物量的思路,分析了影像经不同大气校正算法处理后,其归一化植被指数的差异性来源及其对蓝藻生物量计算结果的影响。结果表明:蓝藻动态监测的定量描述会因大气校正算法不同而不一致,进而对几种大气校正算法在蓝藻生物量监测和定量分析中所产生的不确定性进行了比较分析,并对各算法的有效利用提出了建议。  相似文献   
19.
In this paper,we mainly used MODIS NDVI time-series dataset at 16-days temporal resolution and 250-meters spatial resolution to analyze land cover mapping of northeastern China.We used two different filter methods to fit NDVI time-series dataset,and compared their average classes’ separability based on Jeffries-Matusita distance index.In addition,we made use of hierarchical classification method to complete classification,combined with short-wave infrared spectral reflectance data and DEM.We conformed to the principle that separate area hierarchically into several parts first and then classify each part further,and use a single characteristic band first and then multiple feature bands.In the process of classification,we adopted threshold value method,support vector machine,artificial net neural and C5.0 decision tree classification to distinguish each land-cover type hierarchically.Finally,we evaluated the accuracy of the final classification of study area using known land-cover classification data and high-resolution remote sensing imagery,overall accuracy is 84.61%,Kappa coefficient is 0.8262.  相似文献   
20.
Air temperature can be estimated from remote sensing by combining information in thermal infrared and optical wavelengths. The empirical TVX algorithm is based on an estimated linear relationship between observed Land Surface Temperature (LST) and a Spectral Vegetation Index (NDVI). Air temperature is assumed to be equal to the LST corresponding to the effective full vegetation cover, and is found by extrapolating the line to a maximum value of NDVImax. The algorithm has been tested and reported in the literature previously. However, the effect of vegetation types and climates and the potential variation in NDVI of the effective full cover has not been subject for investigation. The present study proposes a novel methodology to estimate NDVImax that uses observed air temperature to calibrate the NDVImax for each vegetation type. To assess the validity of this methodology, we have compared the accuracy of estimates using the new NDVImax and the previous NDVImax that have been proposed in literature with MSG-SEVIRI images in Spain during the year 2005. In addition, a spatio-temporal assessment of residuals has been performed to evaluate the accuracy of retrievals in terms of daily and seasonal variation, land cover, landscape heterogeneity and topography. Results showed that the new calibrated NDVImax perform well, with a Mean Absolute Error ranging between 2.8 °C and 4 °C. In addition, vegetation-specific NDVImax improve the accuracy compared with a unique NDVImax.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号