首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   705篇
  免费   81篇
  国内免费   39篇
电工技术   25篇
综合类   60篇
化学工业   178篇
金属工艺   8篇
机械仪表   127篇
建筑科学   52篇
矿业工程   19篇
能源动力   140篇
轻工业   5篇
水利工程   86篇
石油天然气   18篇
武器工业   1篇
无线电   13篇
一般工业技术   46篇
冶金工业   16篇
原子能技术   14篇
自动化技术   17篇
  2024年   1篇
  2023年   10篇
  2022年   22篇
  2021年   40篇
  2020年   25篇
  2019年   29篇
  2018年   22篇
  2017年   23篇
  2016年   28篇
  2015年   32篇
  2014年   39篇
  2013年   44篇
  2012年   46篇
  2011年   55篇
  2010年   44篇
  2009年   52篇
  2008年   43篇
  2007年   46篇
  2006年   57篇
  2005年   51篇
  2004年   39篇
  2003年   22篇
  2002年   24篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有825条查询结果,搜索用时 125 毫秒
101.
Geogrid reinforcement can significantly improve the uplift bearing capacity of anchor plates. However, the failure mechanism of anchor plates in reinforced soil and the contribution of geogrids need further investigation. This paper presents an experimental study on the anchor uplift behavior in geogrid-reinforced soil using particle image velocimetry (PIV) and the high-resolution optical frequency domain reflectometry (OFDR). A series of model tests were performed to identify the relationship between the failure mechanism and various factors, such as anchor embedment ratio, number of geogrid layers, and their location. The test results indicate that soil deformation and the uplift resistance of anchor plates are substantially influenced by anchor embedment ratio and location of geogrids, whereas the number of geogrid layers has limited influence. In reinforced soil, increasing the embedment ratio greatly improves the ultimate bearing capacities of anchor plates and affects the interlock between the soil and geogrids. As the embedment depth increases, the failure surfaces gradually change from a vertical slip surface to a bulb-shaped surface that is limited within the soil. The strain monitoring data shows that the deformations of geogrids are symmetrical, and the peak strains of geogrids can characterize the reinforcing effects.  相似文献   
102.
The paper investigates the feasibility of using fine-grained soil as backfill material of geosynthetic-reinforced walls and slopes, through a laboratory study on pullout behavior of geogrids in granular layers. A series of pullout tests was carried out on an HDPE uniaxial geogrid in thin sand and gravel layers that were embedded in clay specimens.Aside from different soil arrangements, the influences of moisture content and overburden pressure on the geogrid pullout behavior is assessed and discussed. The tests were carried out at four different gravimetric water contents (GWC) on the dry and wet sides of the clay optimum moisture content (OMC), and overburden pressure values within the range σv = 25–100 kPa. Particle Image Velocimetry (PIV) was used to capture digital images during the tests, which were processed to help with the interpretation and improved understanding of the soil-geogrid interactions at different GWC values. Results show that embedding geogrid reinforcement in layers of sand or gravel can significantly increase the pullout resistance in an otherwise moist clay backfill, and this improved pullout efficiency is greater at higher overburden pressures. The improvement in pullout capacity was observed in clay specimens compacted at both the dry and wet sides of the OMC.  相似文献   
103.
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets.  相似文献   
104.
105.
One of the common problems of current pattern match and particle image tracking algorithms is the deployment of constant velocity assumption for particle motion between two frames, which would result in serious errors when high velocity gradient flows are measured. To address this issue, a new particle image tracking method—bootstrap filter tracking is proposed. In this new method, a simple nonlinear dynamic model which takes particle acceleration into account is employed and a sequential Monte Carlo method—bootstrap filter is used in conjunction with pattern match algorithm to strengthen the particle image tracking performance. By using the nonlinear system model and bootstrap filter, particle location at next time step can be predicted accurately and the new method is able to measure high velocity gradient flows with better performance than the traditional particle image tracking algorithms. This new method is validated by using numerically generated particle images. Its accuracy in terms of particle image density, out-of-plane displacement and displacement gradient is compared with the Kalman filter tracking (Takehara et al., 2000 [34]) and the Super-PIV (Keane et al., 1995 [30]) methods. The three algorithms are also compared by using a set of real turbulent jet images. The test results demonstrate that the bootstrap filter tracking method is superior than the Kalman filter tracking and the Super-PIV methods for measuring low density, high velocity gradient flows.  相似文献   
106.
竺晓程  赵岩  杜朝辉 《流体机械》2003,31(4):1-3,17
分析讨论了PDA和PIV测量系统在旋转叶轮测量中的周向定位的方法,为PDA和PIV更好地应用于旋转叶轮内部流场的测量提出了建议。  相似文献   
107.
The particle velocities are measured by the high-speed particle image velocimetry (PIV) in the acceleration and fully developed regimes of a horizontal pneumatic conveying. Based on the measured particle fluctuation velocities, continuous wavelet transform and one-dimensional orthogonal wavelet decomposition were applied to reveal particle dynamics in terms of time frequency analysis, the contribution from wavelet level to the particle fluctuation energy, spatial correlation and probability distribution of wavelet levels. The time frequency characteristics of particle fluctuation velocity suggest that the small-scale particle motions are suppressed and tend to transfer into large scale particle motions from acceleration regime to fully developed regime. In the near bottom part of pipe, the fluctuation energy of axial particle motion is mainly contributed from the wavelet levels of relatively low frequency, however, in the near top part of pipe, wavelet levels of relatively high frequency make comparable contribution to the axial particle fluctuation energy in the suspension flow regime, and this contribution decreases as particles are accelerated along the pipe. The low frequency wavelet levels exhibit large spatial correlation, and this spatial correlation increases as the particles flow from acceleration regime to fully developed regime. The skewness factor and kurtosis factor of wavelet level suggest that the deviation of Gaussian probability distribution is associated with the central frequency of wavelet level, and the deviation from Gaussian distribution is more evident as increasing central frequency. The higher wavelet levels can be linked to small sale particle motions, which lead to irregular particle fluctuation velocity.  相似文献   
108.
The pneumatic system is frequently operated in the high air velocity region, which aggravates the power consumption and erosion of bend, and the intensive study of the particles motion characteristic on a horizontal-vertical pneumatic conveying in various curved 90° bends is necessary. This experimental study focuses on the particles motion characteristic of bend on the horizontal-vertical pneumatic conveying with oscillatory flow (generated by installing the oscillator) in terms of on pressure drop, powder consumption, the evolution of particle velocity and particle fluctuating intensity during flowing through bends. The results indicate that powder consumption can be reduced by using oscillatory flow, which is more obvious with a larger radius ratios bend. Meanwhile, the pressure drop proportion of bend is higher than average pressure drop of the system within the same distance. Otherwise, the total reduction particles velocity through bend is less while using oscillatory flow, which is more obvious using larger radius ratios bend. The particle velocity using oscillatory flow is higher than that of the conventional pneumatic conveying for the cases of larger radius ratios bend, and this effect is less evident while through a smaller radius bend.  相似文献   
109.
《Advanced Powder Technology》2021,32(8):3136-3148
To reveal the particle dynamic characteristic in the bend, high-speed particle image velocimetry (PIV) and wavelet transform were used to measure and analyze the particle velocity in a horizontal-vertical pneumatic conveying system. The pressure drop and particle velocity are analyzed to elucidate the macroscopic motion properties of particles in the different radius ratio bend firstly. Then the methods of continuous wavelet transform and one-dimensional discrete orthogonal wavelet transform are used to analyze the particle dynamic characteristic in the different regions of the bend pipe in terms of time–frequency characteristics of particle fluctuation velocity, fluctuation energy distributions of wavelet components, and auto-correlation of various frequencies. The results show that the particles are mainly small-scale motion in the rapidly decreasing region, while the large-scale motion increases in the accelerating region near the inlet and the stable region near the outlet. And the results of the wavelet component show that the acceleration and deceleration of particles in the bend will decrease the proportion of high-frequency fluctuation energy. The auto-correlation coefficient of the high-frequency component decays slower and has a longer period at the critical position of the three regions.  相似文献   
110.
《Advanced Powder Technology》2019,30(10):2379-2395
The combined knowledge of the velocity and volume fraction fields is crucial for investigating the dynamics of granular flows, especially in the dense-collisional regime where both frictional and collisional dissipation mechanisms are significant. A laboratory investigation on steady dry granular flows in a straight channel is reported, where slip conditions are allowed at the basal surface and side walls. The stochastic-optical method (SOM), proposed by Sarno et al. (2016) for estimating the volume fraction in granular mixtures, is applied for the first time to granular flows. The velocity at the free surface and at the flume sidewall is measured by using a multi-pass particle image velocimetry (PIV) approach. The measurements of the velocity and volume fraction reveal a superimposition of different dynamic structures, which can be distinguished by means of a volume fraction threshold. Additionally, the profiles of measured volume fraction are exploited to estimate the pressure distribution, so as to numerically describe the velocity profiles by using the μ(I) rheology. It is found that the employment of the experimental volume fraction is superior in describing the flow dynamics, especially near the free surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号