首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   710篇
  免费   84篇
  国内免费   39篇
电工技术   25篇
综合类   60篇
化学工业   178篇
金属工艺   8篇
机械仪表   127篇
建筑科学   52篇
矿业工程   21篇
能源动力   140篇
轻工业   5篇
水利工程   86篇
石油天然气   18篇
武器工业   1篇
无线电   13篇
一般工业技术   52篇
冶金工业   16篇
原子能技术   14篇
自动化技术   17篇
  2024年   1篇
  2023年   10篇
  2022年   22篇
  2021年   41篇
  2020年   25篇
  2019年   29篇
  2018年   23篇
  2017年   25篇
  2016年   29篇
  2015年   33篇
  2014年   41篇
  2013年   44篇
  2012年   46篇
  2011年   55篇
  2010年   44篇
  2009年   52篇
  2008年   43篇
  2007年   46篇
  2006年   57篇
  2005年   51篇
  2004年   39篇
  2003年   22篇
  2002年   24篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有833条查询结果,搜索用时 31 毫秒
91.
Blowdown testing offers a cost-effective experimental tool to replicate the aerothermal conditions in numerous high speed systems. The wind tunnel must replicate the inlet operating conditions, while the spatial and time dependent inlet flow conditions should be assessed carefully. This paper provides a design methodology and rules that ensure adequate flow conditioning in high inlet pressure wind tunnels suitable for subsonic and supersonic operation with mass-flow limits ranging from 1 kg/s to 25 kg/s, Reynolds numbers from 103 (1/m) to 4x107 (1/m), and Mach numbers from 0.01 up to 6. The quality of the proposed flow conditioning system was evaluated using stereo PIV measurements combined with hotwire, Pitot probe, and total flow temperature traverses.  相似文献   
92.
We investigate the fluid mechanics of cleaning viscous drops attached to a flat inclined surface using thin gravity-driven film flows. We focus on the case where the drop cannot be detached either partially or completely from the surface by the mechanical forces exerted by the cleaning fluid on the drop surface. Instead a convective mass transfer establishes across the drop–film interface and the fluid in the drop dissolves into the cleaning film flow, which then transports it away. The characteristic time scale of dissolution is much longer than the advection time scale in the film flow. Thus, the shape and size of the drop can be considered as quasi-steady. To assess the impact of the shape and size of the drop on the velocity of the cleaning fluid, we have developed a novel experimental technique based on particle image velocimetry. We show the velocity distribution at the film surface in the situations both where the film is flowing over a smooth surface, and where it is perturbed by a solid obstacle representing a very viscous drop. We find that at intermediate Reynolds numbers the acceleration of the starting film is overestimated by a plane model using the lubrication approximation. In the perturbed case, the streamwise velocity is strongly affected by the presence of the obstacle. The upstream propagation of the disturbance is limited, but the disturbance extends downstream for distances larger than 10 obstacle diameters. Laterally, we observe small disturbances in both the streamwise and lateral velocities, owing to stationary capillary waves. The flow also exhibits a complex three-dimensional converging pattern immediately below the obstacle.  相似文献   
93.
Geogrid reinforcement can significantly improve the uplift bearing capacity of anchor plates. However, the failure mechanism of anchor plates in reinforced soil and the contribution of geogrids need further investigation. This paper presents an experimental study on the anchor uplift behavior in geogrid-reinforced soil using particle image velocimetry (PIV) and the high-resolution optical frequency domain reflectometry (OFDR). A series of model tests were performed to identify the relationship between the failure mechanism and various factors, such as anchor embedment ratio, number of geogrid layers, and their location. The test results indicate that soil deformation and the uplift resistance of anchor plates are substantially influenced by anchor embedment ratio and location of geogrids, whereas the number of geogrid layers has limited influence. In reinforced soil, increasing the embedment ratio greatly improves the ultimate bearing capacities of anchor plates and affects the interlock between the soil and geogrids. As the embedment depth increases, the failure surfaces gradually change from a vertical slip surface to a bulb-shaped surface that is limited within the soil. The strain monitoring data shows that the deformations of geogrids are symmetrical, and the peak strains of geogrids can characterize the reinforcing effects.  相似文献   
94.
The paper investigates the feasibility of using fine-grained soil as backfill material of geosynthetic-reinforced walls and slopes, through a laboratory study on pullout behavior of geogrids in granular layers. A series of pullout tests was carried out on an HDPE uniaxial geogrid in thin sand and gravel layers that were embedded in clay specimens.Aside from different soil arrangements, the influences of moisture content and overburden pressure on the geogrid pullout behavior is assessed and discussed. The tests were carried out at four different gravimetric water contents (GWC) on the dry and wet sides of the clay optimum moisture content (OMC), and overburden pressure values within the range σv = 25–100 kPa. Particle Image Velocimetry (PIV) was used to capture digital images during the tests, which were processed to help with the interpretation and improved understanding of the soil-geogrid interactions at different GWC values. Results show that embedding geogrid reinforcement in layers of sand or gravel can significantly increase the pullout resistance in an otherwise moist clay backfill, and this improved pullout efficiency is greater at higher overburden pressures. The improvement in pullout capacity was observed in clay specimens compacted at both the dry and wet sides of the OMC.  相似文献   
95.
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets.  相似文献   
96.
97.
One of the common problems of current pattern match and particle image tracking algorithms is the deployment of constant velocity assumption for particle motion between two frames, which would result in serious errors when high velocity gradient flows are measured. To address this issue, a new particle image tracking method—bootstrap filter tracking is proposed. In this new method, a simple nonlinear dynamic model which takes particle acceleration into account is employed and a sequential Monte Carlo method—bootstrap filter is used in conjunction with pattern match algorithm to strengthen the particle image tracking performance. By using the nonlinear system model and bootstrap filter, particle location at next time step can be predicted accurately and the new method is able to measure high velocity gradient flows with better performance than the traditional particle image tracking algorithms. This new method is validated by using numerically generated particle images. Its accuracy in terms of particle image density, out-of-plane displacement and displacement gradient is compared with the Kalman filter tracking (Takehara et al., 2000 [34]) and the Super-PIV (Keane et al., 1995 [30]) methods. The three algorithms are also compared by using a set of real turbulent jet images. The test results demonstrate that the bootstrap filter tracking method is superior than the Kalman filter tracking and the Super-PIV methods for measuring low density, high velocity gradient flows.  相似文献   
98.
竺晓程  赵岩  杜朝辉 《流体机械》2003,31(4):1-3,17
分析讨论了PDA和PIV测量系统在旋转叶轮测量中的周向定位的方法,为PDA和PIV更好地应用于旋转叶轮内部流场的测量提出了建议。  相似文献   
99.
The particle velocities are measured by the high-speed particle image velocimetry (PIV) in the acceleration and fully developed regimes of a horizontal pneumatic conveying. Based on the measured particle fluctuation velocities, continuous wavelet transform and one-dimensional orthogonal wavelet decomposition were applied to reveal particle dynamics in terms of time frequency analysis, the contribution from wavelet level to the particle fluctuation energy, spatial correlation and probability distribution of wavelet levels. The time frequency characteristics of particle fluctuation velocity suggest that the small-scale particle motions are suppressed and tend to transfer into large scale particle motions from acceleration regime to fully developed regime. In the near bottom part of pipe, the fluctuation energy of axial particle motion is mainly contributed from the wavelet levels of relatively low frequency, however, in the near top part of pipe, wavelet levels of relatively high frequency make comparable contribution to the axial particle fluctuation energy in the suspension flow regime, and this contribution decreases as particles are accelerated along the pipe. The low frequency wavelet levels exhibit large spatial correlation, and this spatial correlation increases as the particles flow from acceleration regime to fully developed regime. The skewness factor and kurtosis factor of wavelet level suggest that the deviation of Gaussian probability distribution is associated with the central frequency of wavelet level, and the deviation from Gaussian distribution is more evident as increasing central frequency. The higher wavelet levels can be linked to small sale particle motions, which lead to irregular particle fluctuation velocity.  相似文献   
100.
The pneumatic system is frequently operated in the high air velocity region, which aggravates the power consumption and erosion of bend, and the intensive study of the particles motion characteristic on a horizontal-vertical pneumatic conveying in various curved 90° bends is necessary. This experimental study focuses on the particles motion characteristic of bend on the horizontal-vertical pneumatic conveying with oscillatory flow (generated by installing the oscillator) in terms of on pressure drop, powder consumption, the evolution of particle velocity and particle fluctuating intensity during flowing through bends. The results indicate that powder consumption can be reduced by using oscillatory flow, which is more obvious with a larger radius ratios bend. Meanwhile, the pressure drop proportion of bend is higher than average pressure drop of the system within the same distance. Otherwise, the total reduction particles velocity through bend is less while using oscillatory flow, which is more obvious using larger radius ratios bend. The particle velocity using oscillatory flow is higher than that of the conventional pneumatic conveying for the cases of larger radius ratios bend, and this effect is less evident while through a smaller radius bend.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号