首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   9篇
  国内免费   30篇
综合类   10篇
化学工业   194篇
金属工艺   50篇
机械仪表   10篇
建筑科学   3篇
矿业工程   5篇
能源动力   35篇
轻工业   18篇
石油天然气   78篇
无线电   23篇
一般工业技术   110篇
冶金工业   6篇
原子能技术   3篇
自动化技术   6篇
  2024年   1篇
  2023年   13篇
  2022年   21篇
  2021年   26篇
  2020年   23篇
  2019年   23篇
  2018年   20篇
  2017年   20篇
  2016年   13篇
  2015年   20篇
  2014年   26篇
  2013年   30篇
  2012年   24篇
  2011年   48篇
  2010年   29篇
  2009年   24篇
  2008年   33篇
  2007年   28篇
  2006年   34篇
  2005年   12篇
  2004年   7篇
  2003年   24篇
  2002年   5篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
排序方式: 共有551条查询结果,搜索用时 201 毫秒
11.
The wettability and infiltration of molten ZrSi2 and ZrSi2-Lu2O3 alloys into Cf/SiC and B4C-infiltrated Cf/SiC composites were investigated to understand the interfacial interactions that occur during the development of Cf/SiC-ZrC and Cf/SiC-ZrB2-ZrC-Lu2O3 materials. A significant evaporation of Si from the liquid affected the wetting behaviour of the alloy when tested in a vacuum at 1670 °C. The better wetting and spreading of the alloy over the surface was observed for the composites with lower overall porosity (12 %). On the other hand, the formation of an outer dense layer, followed up by the uniform infiltrated region up to ~ 1 mm was observed for the Cf/SiC with higher porosity (21 %). The infiltrated alloy reacted with SiC matrix to form ZrC or with B4C-infiltrated SiC matrix to form ZrB2-ZrC-SiC. The Lu2O3 particles were not wetted by the melt, and were pushed away of the reaction zone by the solidification front.  相似文献   
12.
颗粒增强钢铁基表面复合材料铸渗技术的研究与发展   总被引:1,自引:0,他引:1  
宁海霞 《铸造技术》2005,26(4):341-343,354
从材料的选择、铸渗工艺、及铸渗应用等方面,介绍了国内外运用铸渗法制备钢铁基表面复合材料的新进展.分析了复合材料中增强相和基体间的相互作用和界面问题.提出了今后研究工作中值得重视的几个问题.  相似文献   
13.
《材料科学技术学报》2019,35(10):2163-2168
CBN/Cu-Sn-Ti (CBN: cubic boron nitride) composites are prepared by active brazing sintering at 1123 K, 1173 K, 1223 K and 1273 K, respectively. The effects of brazing temperature on the wettability, interfacial characteristics, and elemental distribution variations are fully investigated. When the brazing temperature is below 1223 K, completely uncoated and/or partially coated CBN particles with sharp edges can still be observed, and the reaction layer, mainly composed of TiN and TiB2, appears to be thin and uneven. When the brazing temperature is 1223 K, all CBN particles are completely coated, suggesting that adequate wetting has taken place. Besides, as Ti diffuses thoroughly and enriches the interface, the reaction layer, filled primarily by TiN, TiB2 and TiB, becomes thicker (about 1.30 μm), more uniform, stable and continuous. Further increasing the temperature to 1273 K is unnecessary or even harmful as the reaction layer thickness undergoes negligible change yet some tiny micro-cracks appear on the interface, which may likely deteriorate the grinding capability of the final brazing products.  相似文献   
14.
In this study, we report on multi-walled carbon nanotubes fabricated on silicon substrate with four different orientations via chemical vapor deposition. It is well-known that chemical treatments improve the nanotube electrochemical reactivity by creating edge-like defects on their exposed sidewalls. Before use, we performed an acid treatment on carbon nanotubes. To prove the effect of the treatment on these nanostructured electrodes, contact angles were measured. Then, sensitivities and detection limits were evaluated performing cyclic voltammetry. Two target molecules were used: potassium ferricyanide, an inorganic electroactive molecule, and hydrogen peroxide that is a product of reactions catalyzed by many enzymes, such as oxidases and peroxidases. Carbon nanotubes with tilted tips become hydrophilic after the treatment showing a contact angle of 22° ± 2°. This kind of electrode has shown also the best electrochemical performance. Sensitivity and detection limit values are 110.0 ± 0.5 μA/(mM cm2) and 8 μM for potassium ferricyanide solutions and 16.4 ± 0.1 μA/(mM cm2) and 24 μM using hydrogen peroxide as target compound. Considering the results of wettability and voltammetric measurements, nanotubes with tilted tips-based electrodes are found to be the most promising for future biosensing applications.  相似文献   
15.
The tribological properties of polyimide (PI) and PI/fluorinated graphene (FG) nanocomposites, as a new class of graphene reinforced polymer, are investigated using a ball-on-disk configuration under different lubricated conditions of dry sliding, water lubrication and oil lubrication. Experimental results reveal that single incorporation of FG can effectively improve the tribological performance of PI under all the three conditions. In addition, compared to the results under dry sliding, the phenomenon that the friction coefficient decreases while the wear rate increases under water lubrication condition is observed and researched in detail. The worst anti-wear performance under water-lubricated condition can be ascribed to the fact that the water can be adsorbed by the polar imide radicals of the PI and PI/FG nanocomposite, therefore leading to the property deterioration of the PI and PI/FG nanocomposite coatings.  相似文献   
16.
The coalesced droplet vertical jumping and horizontal moving on conical posts textured surface are numerically studied using the three-dimensional (3D) multi-relaxation-time (MRT) pseudopotential lattice Boltzmann model. The influences of wettability gradient and roughness gradient are investigated systematically. It is found that the coalesced droplet on the flat and conical posts textured surfaces can move horizontally from superhydrophobic bend to hydrophobic bend without the roughness gradient. Moreover, the coalesced droplet is able to spontaneously move from lower conical post density region to higher conical post density region without the wettability gradient. Specifically, the in-line array textured surface is more beneficial to the coalesced droplet horizontal moving than the staggered array at the same wettability parameter. However, the staggered array textured surface is more beneficial to the coalesced droplet vertical jumping than the in-line array. The hybrid effect of wettability gradient and roughness gradient plays critical roles in coalesced droplet vertical jumping and horizontal moving. The present work demonstrates that the dropwise condensation heat transfer can be enhanced in a self-sustained manner if the wettability and roughness of the textured surface are properly designed. It is also confirmed that the 3D MRT pseudopotential lattice Boltzmann model is of potential to simulate coalesced droplet behaviors on textured surface.  相似文献   
17.
《Ceramics International》2016,42(4):5271-5277
We present here the results from a systematic investigation on the growth kinetics and surface properties of Al-doped ZnO (AZO) nanowires synthesized on (0 0 1)Si substrates under different hydrothermal conditions. The as-synthesized vertical AZO nanowires exhibited a hydrophilic characteristic and their crystal structures were determined to be perfectly single crystalline with the axis of the wire parallel to the [0 0 0 1] direction. TEM and EDS results revealed that the as-synthesized AZO nanowires have tapered tips, and the Al-doped concentration in the AZO nanowires was about 1.6 at%. After a series of SEM examinations, the average length of AZO nanowires synthesized at each temperature studied was found to follow a linear relationship with the reaction time, indicating that the hydrothermal growth of AZO nanowires was a reaction-controlled process. The activation energy for linear growth of AZO nanowires on Si substrate, as obtained from an Arrhenius plot, was found to be about 46 kJ/mol. From UV–vis spectroscopic measurements, it was found that the Si substrate coated with vertically-aligned AZO nanowire arrays exhibited remarkably reduced reflectance (10–12%) over a wide range of visible wavelengths (400–800 nm) and angles of light incidence (8–60°). The good broadband and omnidirectional antireflection characteristics can be attributed to the light trapping effect and the graded refractive index resulting from the tapered AZO nanowire structures.  相似文献   
18.
The purpose of this study was to determine the influence of the photoinitiator system and moisture condition on the degree of C=C conversion (DC), the water sorption (Wsp), and the solubility (Wsl) of experimental two-step etch-and-rinse dental adhesives. Different photoinitiator systems were added at 0.5 mol% to an experimental adhesive blend (55:45 wt% Bis-GMA:HEMA), defining the experimental groups: camphorquinone (CQ)+ethyl-4-dimethylaminobenzoate (EDMAB), 9,10-phenanthrenequinone (PQ), PQ+EDMAB, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), and phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO). The adhesives were tested in two moisture conditions: neat and wet (with the addition of 10 wt% D2O). The DC (n=6) was evaluated by Fourier-transformed infrared spectroscopy (FTIR). Wsp and Wsl were determined (n=10) after successive weighting procedures. Data were submitted to two-way ANOVA and Tukey׳s post hoc test (α=0.05). Pearson׳s correlation tests were used to analyze the correlation between DC and Wsp or Wsl. TPO and BAPO presented the highest DC in the neat condition while CQ+EDMAB presented the highest in the wet condition. Wsp and Wsl were both dependent on the photoinitiator system and moisture condition. PQ–based materials presented the highest Wsp and Wsl in both neat and wet conditions. Pearson׳s tests were not able to detect any significant correlation between DC and Wsp or DC and Wsl. Within the limitations of the present study, it can be concluded that the photoinitiator system and moisture condition influenced the DC, Wsp, and Wsl of experimental two-step etch-and-rinse adhesives.  相似文献   
19.
《Ceramics International》2022,48(2):2058-2067
Graphene fiber-based supercapacitor has aroused great interest as a flexible power source in future wearable electronics. However, the low electrochemical performance of graphene fibers (GFs) usually causes the serious limitation of use in practical applications due to the material stacking, hydrophobicity and fabrication process complexity. In this work, a facile and effective plasma-assisted strategy is put forward to increase specific surface area, tune hierarchically porous structure and promote wettability of nitrogen-doped graphene fibers (NGFs), resulting in the improvement of electrochemical performance. The supercapacitor assembled from plasma-treated NGFs shows superior capacitance (878 mF/cm2 at 0.1 mA/cm2 current density) and high energy density (19.5 μW h/cm2 at 40 mW/cm2 power density), which is 23.7% and 131.4% higher than that of NGFs and GFs, respectively. Additionally, the fiber-based supercapacitor based on plasma-treated NGFs exhibits high rate capability of 59.8% and excellent cyclic performance (95.8% retention over 10,000 cycles). These plasma-treated NGFs can be promising candidates for high-performance and flexible power sources in future wearable electronics.  相似文献   
20.
《Ceramics International》2022,48(1):373-380
The wetting of 3% yttria-stabilized zirconia (YSZ) by Sn–8Zr, Sn–4Zr–4Ti, and Sn–8Ti alloys was studied at 800–900 °C. Both Zr and Ti improve the wettability via the formation of reaction products and adsorption. In the systems containing Zr additives in the alloys, ZrO2-x precipitates preferentially, and the wettability is dominated by interface adsorption. An anomalous temperature dependence was found in the final wettability of these systems owing to the decrease in adsorption with an increase in the temperature. The spreading dynamics are controlled by the dissolution of Zr, followed by the formation of a wetting ridge. The wettability of the Sn–8Ti/YSZ system is dominated by the precipitation of reaction products (Ti2O3 and Ti11.31Sn3O10). The reaction kinetics is the limiting factor for spreading in Sn–8Ti/YSZ, and the adsorption at the interface significantly decreased the energy barrier for wetting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号