首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2595篇
  免费   125篇
  国内免费   76篇
电工技术   27篇
综合类   35篇
化学工业   664篇
金属工艺   194篇
机械仪表   125篇
建筑科学   75篇
矿业工程   81篇
能源动力   90篇
轻工业   49篇
水利工程   4篇
石油天然气   54篇
武器工业   7篇
无线电   159篇
一般工业技术   187篇
冶金工业   101篇
原子能技术   23篇
自动化技术   921篇
  2024年   4篇
  2023年   51篇
  2022年   67篇
  2021年   51篇
  2020年   84篇
  2019年   74篇
  2018年   40篇
  2017年   28篇
  2016年   83篇
  2015年   91篇
  2014年   140篇
  2013年   134篇
  2012年   145篇
  2011年   247篇
  2010年   142篇
  2009年   203篇
  2008年   212篇
  2007年   211篇
  2006年   202篇
  2005年   117篇
  2004年   60篇
  2003年   54篇
  2002年   61篇
  2001年   49篇
  2000年   66篇
  1999年   40篇
  1998年   34篇
  1997年   29篇
  1996年   6篇
  1995年   6篇
  1994年   15篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   7篇
  1989年   5篇
  1988年   1篇
  1987年   6篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有2796条查询结果,搜索用时 0 毫秒
41.
This paper is concerned with the networked control system design for continuous-time systems with random measurement, where the measurement channel is assumed to subject to random sensor delay. A design scheme for the observer-based output feedback controller is proposed to render the closed-loop networked system exponentially mean-square stable with H performance requirement. The technique employed is based on appropriate delay systems approach combined with a matrix variable decoupling technique. The design method is fulfilled through solving linear matrix inequalities. A numerical example is used to verify the effectiveness and the merits of the present results.  相似文献   
42.
This paper introduces an alternative formulation of the Kalman-Yakubovich-Popov (KYP) Lemma, relating an infinite dimensional Frequency Domain Inequality (FDI) to a pair of finite dimensional Linear Matrix Inequalities (LMI). It is shown that this new formulation encompasses previous generalizations of the KYP Lemma which hold in the case the coefficient matrix of the FDI does not depend on frequency. In addition, it allows the coefficient matrix of the frequency domain inequality to vary affinely with the frequency parameter. One application of this results is illustrated in an example of computing upper bounds to the structured singular value with frequency-dependent scalings.  相似文献   
43.
Consistency constraints and 3D building reconstruction   总被引:2,自引:0,他引:2  
Virtual architectural (indoor) scenes are often modeled in 3D for various types of simulation systems. For instance, some authors propose methods dedicated to lighting, heat transfer, acoustic or radio-wave propagation simulations. These methods rely in most cases on a volumetric representation of the environment, with adjacency and incidence relationships. Unfortunately, many buildings data are only given by 2D plans and the 3D needs varies from one application to another. To face these problems, we propose a formal representation of consistency constraints dedicated to building interiors and associated with a topological model. We show that such a representation can be used for: (i) reconstructing 3D models from 2D architectural plans (ii) detecting automatically geometrical, topological and semantical inconsistencies (iii) designing automatic and semi-automatic operations to correct and enrich a 2D plan. All our constraints are homogeneously defined in 2D and 3D, implemented with generalized maps and used in modeling operations. We explain how this model can be successfully used for lighting and radio-wave propagation simulations.  相似文献   
44.
This paper presents an algebraic approach to polynomial spectral factorization, an important mathematical tool in signal processing and control. The approach exploits an intriguing relationship between the theory of Gröbner bases and polynomial spectral factorization which can be observed through the sum of roots, and allows us to perform polynomial spectral factorization in the presence of real parameters. It is discussed that parametric polynomial spectral factorization enables us to express quantities such as the optimal cost in terms of parameters and the sum of roots. Furthermore an optimization method over parameters is suggested that makes use of the results from parametric polynomial spectral factorization and also employs two quantifier elimination techniques. This proposed approach is demonstrated in a numerical example of a particular control problem.  相似文献   
45.
We revisit in this paper the concept of decoding binary cyclic codes with Gröbner bases. These ideas were first introduced by Cooper, then Chen, Reed, Helleseth and Truong, and eventually by Orsini and Sala. We discuss here another way of putting the decoding problem into equations: the Newton identities. Although these identities have been extensively used for decoding, the work was done manually, to provide formulas for the coefficients of the locator polynomial. This was achieved by Reed, Chen, Truong and others in a long series of papers, for decoding quadratic residue codes, on a case-by-case basis. It is tempting to automate these computations, using elimination theory and Gröbner bases.Thus, we study in this paper the properties of the system defined by the Newton identities, for decoding binary cyclic codes. This is done in two steps, first we prove some facts about the variety associated with this system, then we prove that the ideal itself contains relevant equations for decoding, which lead to formulas.Then we consider the so-called online Gröbner basis decoding, where the work of computing a Gröbner basis is done for each received word. It is much more efficient for practical purposes than preprocessing and substituting into the formulas. Finally, we conclude with some computational results, for codes of interesting length (about one hundred).  相似文献   
46.
This paper presents a novel quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems via H approach. In the proposed algorithm, a self-constructing neural fuzzy network (SCNFN) is developed with both structure and parameter learning phases, so that the number of fuzzy rules and network parameters can be adaptively determined. Based on the SCNFN, an uncertainty observer is first introduced to watch compound system uncertainties. Subsequently, an optimal NFN-based controller is designed to overcome the effects of unstructured uncertainty and approximation error by integrating the NFN identifier, linear optimal control and H approach as a whole. The adaptive tuning laws of network parameters are derived in the sense of quadratic stability technique and Lyapunov synthesis approach to ensure the network convergence and H synchronization performance. The merits of the proposed control scheme are not only that the conservative estimation of NFN approximation error bound is avoided but also that a suitable-sized neural structure is found to sufficiently approximate the system uncertainties. Simulation results are provided to verify the effectiveness and robustness of the proposed control method.  相似文献   
47.
In this paper, the problem of robust H control is investigated for sampled-data systems with probabilistic sampling. The parameter uncertainties are time-varying norm-bounded and appear in both the state and input matrices. For the simplicity of technical development, only two different sampling periods are considered whose occurrence probabilities are given constants and satisfy Bernoulli distribution, which can be further extended to the case with multiple stochastic sampling periods. By applying an input delay approach, the probabilistic sampling system is transformed into a continuous time-delay system with stochastic parameters in the system matrices. By linear matrix inequality (LMI) approach, sufficient conditions are obtained, which guarantee the robust mean-square exponential stability of the system with an H performance. Moreover, an H controller design procedure is then proposed. An illustrative example is included to demonstrate the effectiveness of the proposed techniques.  相似文献   
48.
The interaction interface between two molecules can be represented as a bisector surface equidistant from the two sets of spheres of varying radii representing atoms. We recursively divide a box containing both sphere-sets into uniform pairs of sub-boxes. The distance from each new box to each sphere-set is conservatively approximated by an interval, and the number of sphere-box computations is greatly reduced by pre-partitioning each sphere-set using a kd-tree. The subdivision terminates at a specified resolution, creating a box partition (BP) tree. A piecewise linear approximation of the bisector surface is then obtained by traversing the leaves of the BP tree and connecting points equidistant from the sphere-sets. In 124 experiments with up to 16,728 spheres, a bisector surface with a resolution of 1/24 of the original bounding box was obtained in 28.8 ms on average.  相似文献   
49.
Embedding a number of displacement features into a base surface is common in industrial product design and modeling, where displaced surface regions are blended with the unmodified surface region. The cubic Hermite interpolant is usually adopted for surface blending, in which tangent plane smoothness across the boundary curve is achieved. However, the polynomial degree of the tangent field curve obtained symbolically is considerably higher, and the reduction of the degree of a freeform curve is a non-trivial task. In this work, an approximation surface blending approach is proposed to achieve tangential continuity across the boundary curve. The boundary curve is first offset in the tangent field with the user-specified tolerance, after which it is refined to be compatible with the offset curve for surface blending. Since the boundary curve is offset in a three-dimensional (3D) space, the local self-intersection in the offset curve is addressed in a 2D space by approximately mapping the offset vectors in the respective tangent planes to the parameter space of the base surface. The proposed algorithm is validated using examples, and the normal vector deviation along the boundary curve is investigated.  相似文献   
50.
For a positive integer d, an L(d,1)-labeling f of a graph G is an assignment of integers to the vertices of G such that |f(u)−f(v)|?d if uvE(G), and |f(u)−f(v)|?1 if u and u are at distance two. The span of an L(d,1)-labeling f of a graph is the absolute difference between the maximum and minimum integers used by f. The L(d,1)-labeling number of G, denoted by λd,1(G), is the minimum span over all L(d,1)-labelings of G. An L(d,1)-labeling of a graph G is an L(d,1)-labeling of G which assigns different labels to different vertices. Denote by the L(d,1)-labeling number of G. Georges et al. [Discrete Math. 135 (1994) 103-111] established relationship between the L(2,1)-labeling number of a graph G and the path covering number of Gc, the complement of G. In this paper we first generalize the concept of the path covering of a graph to the t-group path covering. Then we establish the relationship between the L(d,1)-labeling number of a graph G and the (d−1)-group path covering number of Gc. Using this result, we prove that and for bipartite graphs G can be computed in polynomial time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号