首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44805篇
  免费   4670篇
  国内免费   2335篇
电工技术   2122篇
技术理论   3篇
综合类   3053篇
化学工业   7041篇
金属工艺   650篇
机械仪表   1432篇
建筑科学   5930篇
矿业工程   1757篇
能源动力   6465篇
轻工业   2652篇
水利工程   666篇
石油天然气   3132篇
武器工业   225篇
无线电   5875篇
一般工业技术   5461篇
冶金工业   782篇
原子能技术   2155篇
自动化技术   2409篇
  2024年   146篇
  2023年   838篇
  2022年   1302篇
  2021年   1799篇
  2020年   1664篇
  2019年   1489篇
  2018年   1201篇
  2017年   1660篇
  2016年   1913篇
  2015年   1821篇
  2014年   2804篇
  2013年   3158篇
  2012年   3370篇
  2011年   3808篇
  2010年   2581篇
  2009年   2592篇
  2008年   2246篇
  2007年   2649篇
  2006年   2554篇
  2005年   1973篇
  2004年   1636篇
  2003年   1468篇
  2002年   1191篇
  2001年   1001篇
  2000年   835篇
  1999年   660篇
  1998年   588篇
  1997年   431篇
  1996年   420篇
  1995年   321篇
  1994年   324篇
  1993年   230篇
  1992年   211篇
  1991年   186篇
  1990年   154篇
  1989年   104篇
  1988年   81篇
  1987年   74篇
  1986年   54篇
  1985年   57篇
  1984年   51篇
  1983年   27篇
  1982年   38篇
  1981年   24篇
  1980年   11篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1959年   15篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
《Oil and Energy Trends》2019,44(1):26-28
Current data on natural gas production, as well as a breakdown of production by country. Updated on a monthly basis.  相似文献   
22.
23.
The case-based learning (CBL) approach has gained attention in medical education as an alternative to traditional learning methodology. However, current CBL systems do not facilitate and provide computer-based domain knowledge to medical students for solving real-world clinical cases during CBL practice. To automate CBL, clinical documents are beneficial for constructing domain knowledge. In the literature, most systems and methodologies require a knowledge engineer to construct machine-readable knowledge. Keeping in view these facts, we present a knowledge construction methodology (KCM-CD) to construct domain knowledge ontology (i.e., structured declarative knowledge) from unstructured text in a systematic way using artificial intelligence techniques, with minimum intervention from a knowledge engineer. To utilize the strength of humans and computers, and to realize the KCM-CD methodology, an interactive case-based learning system(iCBLS) was developed. Finally, the developed ontological model was evaluated to evaluate the quality of domain knowledge in terms of coherence measure. The results showed that the overall domain model has positive coherence values, indicating that all words in each branch of the domain ontology are correlated with each other and the quality of the developed model is acceptable.  相似文献   
24.
The failure of frontline antibiotics in the clinic is one of the most serious threats to human health and requires a multitude of novel therapeutics and innovative approaches to treatment so as to curtail the growing crisis. In addition to traditional resistance mechanisms resulting in the lack of efficacy of many antibiotics, most chronic and recurring infections are further made tolerant to antibiotic action by the presence of biofilms. Herein, we report an expanded set of 5-benzylidene-4-oxazolidinones that are able to inhibit the formation of Staphylococcus aureus biofilms, disperse preformed biofilms, and, in combination with common antibiotics, are able to significantly reduce the bacterial load in a robust collagen-matrix model of biofilm infection.  相似文献   
25.
龚学鹏  卢启鹏 《仪器仪表学报》2015,36(10):2347-2354
为了保证上海光源X射线干涉光刻光束线的稳定性,减小热变形对实验结果的影响,对X射线干涉光刻光束线的3个关键光学元件——偏转镜、聚焦镜和精密四刀狭缝进行热-结构耦合分析。首先,计算偏转镜、聚焦镜和精密四刀狭缝所承载的功率密度;然后,建立其有限元模型;最后,获得光学元件的温度场和热变形的结果。结果表明,偏转镜和聚焦镜采用间接水冷方式可有效抑制热变形,冷却后的最大面形误差分别为7.2μrad和9.2μrad。精密四刀狭缝未冷却时,刀片组件温度介于271.56~273.27℃,刀口热变形为0.19 mm,直线导轨热变形为0.08 mm;经过铜辫子冷却后,刀片组件温度降至22.24~23.94℃,刀口热变形降至0.2μm,直线导轨热变形降至0.1μm;采用影像法和接触探头法测试后,刀口直线度、平行度和重复精度均满足技术要求。偏转镜、聚焦镜和精密四刀狭缝的热变形通过间接水冷和铜辫子的冷却方式可以得到很大程度的抑制,进而保证光斑质量。  相似文献   
26.
The light scattering, harvesting and adsorption effects in dye-sensitized solar cells (DSSCs) are studied by preparation of coated carbon nanotubes (CNTs) with TiO2 and Zr-doped TiO2 nanoparticles in the forms of mono- and double-layer cells. X-ray diffraction (XRD) analysis reveals that the phase composition of Zr-doped TiO2 electrode is a mixture of anatase and rutile phases with major rutile content, whereas it is the same mixture with major anatase content for coated CNTs with TiO2. Furthermore, the average crystallite size of Zr-doped TiO2 electrode is slightly decreased with Zr introduction. Field emission scanning electron microscope (FE-SEM) images show that the porosity of Zr-doped TiO2 electrodes is higher than that of undoped electrode, enhancing dye adsorption. UV–visible spectroscopy analysis reveals that the absorption onset of Zr-doped TiO2 electrodes is slightly shifted to longer wavelength (the red-shift) in comparison with that of undoped TiO2 electrode. Moreover, the band gap energy of TiO2 nanoparticles is decreased by Zr introduction, enhancing light absorption. It is found that electron injection of monolayer TiO2 electrode is improved by introduction of 0.025 mol% Zr, resulted in enhancement of its power conversion efficiency (PCE) up to 6.81% compared with 6.17% for pure TiO2 electrode. Moreover, electron transport and light scattering are enhanced by incorporation of 0.025 wt% coated CNTs with TiO2 in the over-layer of double layer electrode. Therefore, double layer solar cell composed of 0.025 mol% Zr-doped TiO2 nanoparticles as the under-layer and mixtures of these nanoparticles and 0.025 wt% coated CNTs with TiO2 as the over-layer shows the highest PCE of 8.19%.  相似文献   
27.
The morphology of the photoactive layer critically affects the performance of the bulk heterojunction polymer solar cells (PSCs). To control the morphology, we introduced a hydrophobic fluoropolymer polyvinylidene fluoride (PVDF) as nonvolatile additive into the P3HT:PCBM active layer. The effect of PVDF on the surface and the bulk morphology were investigated by atomic force microscope and transmission electron microscopy, respectively. Through the repulsive interactions between the hydrophilic PCBM and the hydrophobic PVDF, much more uniform phase separation with good P3HT crystallinity is formed within the active layer, resulting enhanced light harvesting and improved photovoltaic performance in conventional devices. The PCE of the conventional device can improve from 2.40% to 3.07% with PVDF additive. The PVDF distribution within the active layer was investigated by secondary ion mass spectroscopy, confirming a bottom distribution of PVDF. Therefore, inverted device structure was designed, and the PCE can improve from 2.81% to 3.45% with PVDF additive. Our findings suggest that PVDF is a promising nonvolatile processing additive for high performance polymer solar cells.  相似文献   
28.
Alkyd resins are generally used in the production of printing inks. All industries look for alternative raw materials in the production of ink with the growing inclination toward using natural products. Resins forming the vehicle of the ink to be obtained from natural resources will provide benefits for the environment, nature, and living creatures. The aim of the study was to promote the use of natural resin in the ink system. Natural Pinus pinaster resin was added into vegetable and mineral oil-based solvents in pure form with alkyd resin in different amounts and ink varnishes of different combinations were prepared. Then, printing inks were produced from these varnishes in pure and hybrid form. Following the assessment of the rheological properties of the inks prepared, printing tests were conducted to assess the printing quality parameters. Ideal mixing ratios of the natural resins in the ink were determined for printability. The environmental importance and advantages of the use of natural resins were discussed. Recommendations were given in line with the results to encourage widespread use of natural resins in near future.  相似文献   
29.
The extensive research interests in environmental temperature can be linked to human productivity / performance as well as comfort and health; while the mechanisms of physiological indices responding to temperature variations remain incompletely understood. This study adopted a physiological sensory nerve conduction velocity (SCV) as a temperature‐sensitive biomarker to explore the thermoregulatory mechanisms of human responding to annual temperatures. The measurements of subjects’ SCV (over 600 samples) were conducted in a naturally ventilated environment over all four seasons. The results showed a positive correlation between SCV and annual temperatures and a Boltzmann model was adopted to depict the S‐shaped trend of SCV with operative temperatures from 5°C to 40°C. The SCV increased linearly with operative temperatures from 14.28°C to 20.5°C and responded sensitively for 10.19°C‐24.59°C, while tended to be stable beyond that. The subjects’ thermal sensations were linearly related to SCV, elaborating the relation between human physiological regulations and subjective thermal perception variations. The findings reveal the body SCV regulatory characteristics in different operative temperature intervals, thereby giving a deeper insight into human autonomic thermoregulation and benefiting for built environment designs, meantime minimizing the temperature‐invoked risks to human health and well‐being.  相似文献   
30.
《Ceramics International》2019,45(13):16405-16410
Copper Indium Gallium Selenide (Cu(In,Ga)Se2, CIGSe) absorbers with different Ga contents were prepared by sputtering CIGSe ceramic targets and post-annealing. CIGSe solar cell devices were fabricated with other functional layers. The device performances and absorber properties were investigated. Increasing Ga content led to an increase in VOC and a decrease in JSC. Ga was supposed to diffuse towards back contact during the annealing process. The best performance was obtained as the ratio of Ga/(In + Ga) reaches 0.32 with the efficiency of 13.8% and a VOC of 537 mV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号