A mathematical model was developed to simulate water movement, mass transport, and nitrogen transformations in soils during wastewater applications. The model is one-dimensional and based on the Galerkin finite-element method. The submodel of mass transport of nitrogen incorporates the convection-dispersion processes of ammonium and nitrate nitrogen, nitrification, denitrification, ammonium exchange and uptake of ammonium and nitrate ions. The accuracy and validity of the proposed model was examined by comparison with an explicit-implicit finite-difference model results. The model was used for simulation of water and nitrogen dynamics during wastewater application in homogeneous and multi-layered soils under different N concentration, rate, duration and scheduling of application. 相似文献
Aerodynamic loads on a multi-bladed helicopter rotor in hovering flight were calculated by solving the three-dimensional incompressible Navier-Stokes equations. The rotor wake effects were accounted by the correction of local geometric angle of attack according to a free-wake modeling in addition to an empirical modification for the tip flow effect. The validity and efficiency of the present method were verified by the comparisons between numerical results and experimental data. 相似文献
Stress measurement methods using neutron and X‐ray diffraction were examined by comparing the surface stresses with internal stresses in the continuous tungsten‐fiber reinforced copper‐matrix composite. Surface stresses were measured by X‐ray stress measurement with the sin2ψ method. Furthermore, the sin2ψ method and the most common triaxal measurement method using Hooke's equation were employed for internal stress measurement by neutron diffraction. On the other hand, microstress distributions developed by the difference in the thermal expansion coefficients between these two phases were calculated by FEM. The weighted average strains and stresses were compared with the experimental results. The FEM results agreed with the experimental results qualitatively and confirmed the importance of the triaxial stress analysis in the neutron stress measurement. 相似文献
This paper concerns the following problem: given a set of multi-attribute records, a fixed number of buckets and a two-disk system, arrange the records into the buckets and then store the buckets between the disks in such a way that, over all possible orthogonal range queries (ORQs), the disk access concurrency is maximized. We shall adopt the multiple key hashing (MKH) method for arranging records into buckets and use the disk modulo (DM) allocation method for storing buckets onto disks. Since the DM allocation method has been shown to be superior to any other allocation methods for allocating an MKH file onto a two-disk system for answering ORQs, the real issue is knowing how to determine an optimal way for organizing the records into buckets based upon the MKH concept.
A performance formula that can be used to evaluate the average response time, over all possible ORQs, of an MKH file in a two-disk system using the DM allocation method is first presented. Based upon this formula, it is shown that our design problem is related to a notoriously difficult problem, namely the Prime Number Problem. Then a performance lower bound and an efficient algorithm for designing optimal MKH files in certain cases are presented. It is pointed out that in some cases the optimal MKH file for ORQs in a two-disk system using the DM allocation method is identical to the optimal MKH file for ORQs in a single-disk system and the optimal average response time in a two-disk system is slightly greater than one half of that in a single-disk system. 相似文献
Recrystallization and grain growth evolutions during metal forming processes are considered. Coupling between the thermo-mechanical and microstructure processes is realized. Die forging of a rear-axle flange is simulated numerically on the base of the finite element method. Material parameters of the models are obtained experimentally. The influence of interpass and holding times on grain size distributions in the end product is shown. 相似文献
This paper deals with a new boundary element method for analysis of the quasistatic problems in coupled thermoelasticity. Through some mathematical manipulation of the Navier equation in elasticity, the heat conduction equation is transformed into a simpler form, similar to the uncoupled-type equation with the modified thermal conductivity which shows the coupling effects. This procedure enables us to treat the coupled thermoelastic problems as an uncoupled one, A few examples are computed by the proposed BEM, and the results obtained are compared with the analytical ones available in the literature, whereby the accuracy and versatility of the proposed method are demonstrated. 相似文献
Compression-after-impact (CAI) tests have been conducted for quasi-isotropic thick plates with 48 plies by using the NASA method and on plates with 32 plies by using the SACMA method. Specimens are made of CF/PEEK (APC-2) and conventional CF/epoxy for the NASA plates and CF/epoxy for the SACMA plates. In the NASA CAI tests, the sequence of delamination buckling and its propagation is clearly revealed through various experimental techniques. One major technique is moiré topography, and the other is thermo-mechanical stress analysis with a high-accuracy infrared sensor. The arrest of delamination propagation just before catastrophic failure due to high fracture toughness is clearly captured by the moiré camera. This behavior provides good CAI values of CF/PEEK. The initial buckling properties of the delaminated region by the impact are then extensively discussed. Numerical predictions of initial buckling stress have been obtained by modelled geometry of the delaminated region simplified from its precise structure clarified by ultrasonic C-scanning. They agree fairly well with the experimental results. The in-plane stress distribution in the delaminated region before initial buckling is measured by an infrared stress graphic system. This compared favorably with finite element predictions. Two types of symmetric buckling modes with respect to the central plate surface, twin and single peak ones, are experimentally captured. 相似文献
The objective of this research is to develop a non-destructive method for predicting cooked beef tenderness using optical
scattering of light on fresh beef muscle tissue. A hyperspectral imaging system (λ = 496–1,036 nm) that consists of a CCD
camera and an imaging spectrograph, was used to acquire beef steak images. The hyperspectral image consisted of 120 bands
with spectral intervals of 4.54 nm. Sixty-one fresh beef steaks, including 44 strip loin and 17 tenderloin cuts, were collected.
After imaging, the steaks were cooked and Warner-Bratzler shear (WBS) force values were collected as tenderness references.
The optical scattering profiles were derived from the hyperspectral images and fitted to the modified Lorentzian function.
Parameters, such as the peak height, full scattering width at half maximum (FWHM), and the slope around the FWHM were determined
at each wavelength. Stepwise regression was used to identify 7 key wavelengths and parameters. The parameters were then used
to predict the WBS scores. The model was able to predict WBS scores with an R = 0.67. Optical scattering implemented with hyperspectral imaging shows limited success for predicting current status of tenderness
in beef steak. 相似文献