首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76084篇
  免费   8260篇
  国内免费   4426篇
电工技术   2125篇
综合类   7243篇
化学工业   17010篇
金属工艺   8959篇
机械仪表   3463篇
建筑科学   15315篇
矿业工程   2689篇
能源动力   1356篇
轻工业   3893篇
水利工程   1978篇
石油天然气   2130篇
武器工业   926篇
无线电   2016篇
一般工业技术   13949篇
冶金工业   4014篇
原子能技术   240篇
自动化技术   1464篇
  2024年   395篇
  2023年   1112篇
  2022年   2076篇
  2021年   2597篇
  2020年   2608篇
  2019年   2234篇
  2018年   2252篇
  2017年   2995篇
  2016年   3065篇
  2015年   3069篇
  2014年   4315篇
  2013年   4576篇
  2012年   5425篇
  2011年   5589篇
  2010年   4272篇
  2009年   4500篇
  2008年   3841篇
  2007年   5017篇
  2006年   4645篇
  2005年   3928篇
  2004年   3204篇
  2003年   2850篇
  2002年   2452篇
  2001年   2139篇
  2000年   1846篇
  1999年   1550篇
  1998年   1234篇
  1997年   1030篇
  1996年   862篇
  1995年   698篇
  1994年   585篇
  1993年   498篇
  1992年   346篇
  1991年   249篇
  1990年   189篇
  1989年   152篇
  1988年   94篇
  1987年   76篇
  1986年   21篇
  1985年   30篇
  1984年   28篇
  1983年   17篇
  1982年   24篇
  1981年   6篇
  1980年   29篇
  1979年   23篇
  1964年   4篇
  1956年   2篇
  1954年   3篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
《Ceramics International》2019,45(15):18972-18979
Kaolin/graphene oxide composite has been widely utilized in aero-space and architectural engineering applications due to its excellent mechanical property. Direct ink writing (DIW) is a freeform rapid prototyping technology that could be used to accurately fabricate the resulting size with complex shapes. In this study, we reported the DIW of kaolin/graphene oxide (GO) composite suspensions (KGCS) to assemble 3D structures at ambient temperature for the first time. The effects of GO on the chemical constitution and microstructure of kaolin suspensions were investigated. Rheology was characterized to ensure printability of KGCS. The addition of GO in kaolin suspensions quickened a flocculation structure, which dramatically changed their rheology properties. The DIW of 3D structures from the optimal KGCS sample maintained their initial shape without spreading. The flexural and compressive strengths of the dried optimal KGCS samples were obviously enhanced due to the improvement and reduction of the micro-defects compared from cured kaolin matrix.  相似文献   
32.
In this study, 0.95?Sr0.7Ba0.3Nb2O6-0.05CaTiO3-x wt% Er2O3 ceramics (SBNCTEx; x?=?0–5) were synthesized using traditional solid-state method, and we investigated the microstructure, energy storage properties as well as the relationship between dielectric breakdown strength and interfacial polarization. As compared with pure 0.95?Sr0.7Ba0.3Nb2O6-0.05CaTiO3 ceramics, the Er2O3 dopants suppressed the grain growth of SBNCTEx, and the doped ones showed the dense microstructure. The secondary phase was found for x?≥?1 according to the EDS results, and the influence of the secondary phase on relative dielectric breakdown strength has also been studied. The dielectric breakdown strength increased from 18.1?kV/mm to 34.4?kV/mm, which is good for energy storage. The energy storage density of 0.28?J/cm3 and the energy storage efficiency of 91.4% were obtained in the SBNCTE5 ceramics. The results indicate that SBNCTE ceramics can be used as energy storage capacitors.  相似文献   
33.
《Ceramics International》2021,47(22):31413-31422
Based on reactive air brazing (RAB), we designed a new type of sealant (Ag–xCuAlO2) for joining 3 mol.% yttria-stabilized zirconia (YSZ) ceramics and AISI 310S stainless steel. The CuAlO2 content affected the wettability of the sealant on the YSZ surface, and the joints had a high shear strength when Ag–2 wt.%CuAlO2, which had a small contact angle on the YSZ substrate, was used as the sealant. In addition, the thickness of the oxide layer was reduced compared to that for the Ag–CuO sealant. The effects of the processing parameters on the microstructure and shear strength of the joints were investigated, and the as-brazed joints reached their highest shear strength (93.7 MPa) when brazed at 1040 °C for 30 min. After high-temperature oxidation at 800 °C for 200 h, the shear strength of the joints remained at 50 MPa, and no apparent change in the microstructure was observed, proving that the joints possessed excellent oxidation resistance.  相似文献   
34.
《Ceramics International》2022,48(14):20237-20244
Composite anode materials with a unique architecture of carbon nanotubes (CNTs)-chained spinel lithium titanate (Li4Ti5O12, LTO) nanoparticles are prepared for lithium ion capacitors (LICs). The CNTs networks derived from commercial conductive slurry not only bring out a steric hindrance effect to restrict the growth of Li4Ti5O12 particles but greatly enhance the electronic conductivity of the CNTs/LTO composites, both have contributed to the excellent rate capability and cycle stability. The capacity retention at 30 C (1 C = 175 mA g?1) is as high as 89.7% of that at 0.2 C with a CNTs content of 11 wt%. Meanwhile, there is not any capacity degradation after 500 cycles at 5 C. The LIC assembled with activated carbon (AC) cathode and such a CNTs/LTO composite anode displays excellent energy storage properties, including a high energy density of 35 Wh kg?1 at 7434 W kg?1, and a high capacity retention of 87.8% after 2200 cycles at 1 A g?1. These electrochemical performances outperform the reported data achieved on other LTO anode-based LICs. Considering the facile and scalable preparation process proposed herein, the CNTs/LTO composites can be very potential anode materials for hybrid capacitors towards high power-energy outputs.  相似文献   
35.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   
36.
Musculoskeletal injuries are well-known disorders among the agricultural tractor operators. Overexertion is a critical factor which can agitate these injuries. Physical body characteristics should be measured for an ergonomically best-fit-optimal design for the operators. In this study, a designed setup was employed to derive the applied forces by tractor operators on the control tools. The different muscle strengths including leg/foot strength, hand push/pull strength, and torque strength applied by both hands were measured. A comparison was made for the obtained values for different strengths by considering the effects of hand dominance. The obtained data were used to estimate the maximum allowed forces in these tools. In contrast to the previous studies, the minimum allowed actuating forces of the pedals were calculated using reasonable assumptions. These values could provide more comfort and less exhaustion for the tractor operators. The obtained ranges were benchmarked against corresponding recommended values in some standards (ISO, ISIRI, and ASABE family). The results revealed the unsuitability of evaluated standards for a proper design and the excessive overestimation of those recommended values (in some cases more than 3 times). In all of the design procedure, a suitable attention was paid to accommodate it with more than 90% of target population.Relevance to industryA prosperous industry which considers ergonomic factors in the design of agricultural machine workplace can overcome the disorders and generate more comfort. Evaluating more exact mechanical forces can result in a suitable design of workplace.  相似文献   
37.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   
38.
Based on theoretical analysis and numerical simulation, the impact of steel fibres on the stress intensity factor (SIF) at the crack tip for cementitious composite was studied. The enhanced toughness of steel fibre reinforced cementitious composite (SFRC) in resisting cracks was explained by the decrement of SIF caused by steel fibre inclusions at the crack tip of the composite. The equivalent initial fracture toughness was used to characterize the crack initiation of SFRC. A simplified method for determining the of SFRC was proposed based on a linear regression method. Fracture tests were conducted on three‐point bending notched beams with different steel fibre volume fractions and specimen sizes to study the crack initiation behaviour of aligned steel fibre reinforced cementitious composite (ASFRC). of ASFRC was calculated, and the size effect of was analysed. The results showed that slightly increased with the steel fibre volume fraction and gradually became stable. For the tested specimens, whose heights varied between 40 and 100 mm, the specimen size had little impact on the .  相似文献   
39.
Up to now, commercially available alumina ceramics were claimed to have strength between 400 and 550 MPa. However, our study shows strength ~ 2 times higher for commercially available alumina than commonly believed. The average and characteristic strength, measured on 31 pure alumina ceramic discs by ball on three balls (B3B) test, were 1205 ± 93 MPa and 1257 MPa, respectively, with a Weibull modulus of m = 11.8. Tested specimens were in form of discs with a diameter of 5 mm and thickness 0.5 mm. The grain size distribution of the alumina is bimodal with an average grain size of ~ 850 nm measured at the surface. The fracture reveals a mixed transgranular / intergranular failure mode. To avoid incorporation of additional flaws, the discs were tested as sintered. The characteristic flexural strength measured in B3B was recalculated according to Weibull theory for standard 4-point bending bars of size 3 × 4 × 45 mm as bend 856 MPa. The measured strength of nearly 900 MPa shows the potential of strength for high purity alumina ceramics.  相似文献   
40.
Enhanced gravity, or centrifugal, separators have revolutionised gold processing over the past decades, significantly increasing the recovery of fine (−100 μm) free gold. One of the main drawbacks of centrifugal gravity concentrators is the large volume of water required (even if it is all recycled). With water becoming an ever increasingly important “commodity”, reducing this is of importance both from an environmental and a monetary point of view. This work investigated operating a laboratory scale Knelson Concentrator with a dry feed and using air as the fluidising medium. The feed used was a synthetic mixture of tungsten and quartz, used to mimic a gold ore. The response surface method and central composite design techniques were used to design the experiments and to model the results, with the experimental variables being the bowl speed (G-Level), air fluidising pressure and the feed rate. The models corresponded well to the experimental results, indicating that for this experimental setup, the optimal conditions were a bowl G-Level of 40 G, a feed rate of 220 g/min and an air fluidising pressure of 8 psi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号