全文获取类型
收费全文 | 20206篇 |
免费 | 1409篇 |
国内免费 | 407篇 |
专业分类
电工技术 | 78篇 |
综合类 | 924篇 |
化学工业 | 13177篇 |
金属工艺 | 190篇 |
机械仪表 | 122篇 |
建筑科学 | 398篇 |
矿业工程 | 321篇 |
能源动力 | 118篇 |
轻工业 | 1845篇 |
水利工程 | 22篇 |
石油天然气 | 1501篇 |
武器工业 | 58篇 |
无线电 | 239篇 |
一般工业技术 | 2592篇 |
冶金工业 | 189篇 |
原子能技术 | 132篇 |
自动化技术 | 116篇 |
出版年
2024年 | 83篇 |
2023年 | 206篇 |
2022年 | 293篇 |
2021年 | 386篇 |
2020年 | 391篇 |
2019年 | 436篇 |
2018年 | 383篇 |
2017年 | 498篇 |
2016年 | 509篇 |
2015年 | 567篇 |
2014年 | 919篇 |
2013年 | 1012篇 |
2012年 | 1290篇 |
2011年 | 1354篇 |
2010年 | 1077篇 |
2009年 | 1128篇 |
2008年 | 1054篇 |
2007年 | 1291篇 |
2006年 | 1403篇 |
2005年 | 1164篇 |
2004年 | 1037篇 |
2003年 | 929篇 |
2002年 | 724篇 |
2001年 | 657篇 |
2000年 | 577篇 |
1999年 | 538篇 |
1998年 | 413篇 |
1997年 | 360篇 |
1996年 | 225篇 |
1995年 | 216篇 |
1994年 | 196篇 |
1993年 | 191篇 |
1992年 | 143篇 |
1991年 | 92篇 |
1990年 | 52篇 |
1989年 | 60篇 |
1988年 | 27篇 |
1987年 | 18篇 |
1986年 | 12篇 |
1985年 | 22篇 |
1984年 | 27篇 |
1983年 | 19篇 |
1982年 | 26篇 |
1981年 | 1篇 |
1980年 | 6篇 |
1978年 | 1篇 |
1951年 | 9篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
在薄层复合膜(thin-film composite membrane, TFC膜)中引入无机纳米颗粒,形成薄层纳米复合膜(thin-film nanocomposite membrane, TFN膜),近几年作为反渗透膜开始应用于水处理研究。但是无机纳米颗粒在TFC膜中的性能的不稳定性和膜的机械强度等变成了突出问题。合成制备了粒径约为110 nm修饰羧基的介孔氧化硅球状纳米颗粒(MSN—COOH),并将其成功地化学键合在TFC膜的表面功能层交联网络中。与TFC膜相比,键合有MSN—COOH的TFN膜,水通量提高了56.2%,保持高脱盐率;由于单分散介孔纳米颗粒表面亲水官能团的引入,使膜表面的亲水性有很大程度提高,单分散介孔纳米颗粒在基体中的有序排列,使膜表面粗糙度降低,提高了膜的抗污染能力。与普通TFN膜相比较,具有更好的稳定性和柔韧性,可以在长时间高压过滤操作下保持稳定。 相似文献
992.
采用苯丙乳液与改性苯丙乳液共混作为成膜物质,以单宁酸为转锈剂,柠檬酸为配位剂,焦性没食子酸为转锈促进剂,再加入成膜助剂、有机胺类缓蚀剂、渗透剂等,制备了一种可应用于带锈钢材的水性锈转化涂料。通过正交试验和单因素试验确定了涂料的最优配方为:成膜物质65%,转锈剂5%,转锈促进剂2%,缓蚀剂0.6%,渗透剂2%,配位剂0.5%,成膜助剂1.6%,蒸馏水余量。采用塔菲尔极化曲线测量、中性盐雾试验和盐水浸泡试验考察了漆膜的耐蚀性。结果表明,所制水性锈转化涂膜可耐盐雾96 h,耐盐水浸泡168 h,且耐酸性较强,在pH为2的3.5%NaCl溶液中有保护作用。与两款市售涂料相比,该自制水性锈转化涂料具有更好的耐蚀性。 相似文献
993.
Dr. Jessica Ceramella Dr. Annaluisa Mariconda Dr. Camillo Rosano Dr. Domenico Iacopetta Dr. Anna Caruso Prof. Pasquale Longo Prof. Maria Stefania Sinicropi Prof. Carmela Saturnino 《ChemMedChem》2020,15(23):2306-2316
Cancer is going to be the first cause of mortality worldwide in the 21th century. It is considered a multifactorial disease that results from the combined influence of many genetic aberrations, leading to abnormal cell proliferation. As microtubules are strongly implicated in cellular growth, they represent an important target for cancer treatment. The well-known microtubule-targeting agents (MTAs) including paclitaxel, colchicine and vinca alkaloids are commonly used in the treatment of various cancers. However, adverse effects and drug resistance are major limitations in their clinical use. To find new candidates able to induce microtubule alteration with reduced toxic effects or drug resistance, we studied a small new series of derivatives that present imidazolinic, guanidinic, thioureidic and hydrazinic groups ( 1 – 9 ). All the compounds were tested for their antitumor activity against a panel of six tumoral cell models. In particular, compound 8 (nonane-1,9-diyl-bis-S-amidinothiourea dihydrobromide) showed the lowest IC50 value against HeLa cells, together with a low cytotoxicity for normal cells. This compound was able to induce the apoptotic mitochondrial pathway and inhibited tubulin polymerization with a similar efficacy to vinblastine and nocodazole. Taken together, these promising biological properties make compound 8 useful for the development of novel therapeutic approaches in cancer treatment. 相似文献
994.
Lu Xu Baijun Liu Mingyao Zhang Yang Bai Jinming Zhang Jiayin Song 《Polymer Engineering and Science》2020,60(6):1194-1201
A series of methacrylate-acrylonitrile-butadiene-styrene (MABS) resins was prepared using bulk polymerization. The polarity of the continuous phase and the compatibility of two phases were changed by adjusting the methyl methacrylate (MMA) content, choosing values that were close to styrene-butadiene rubber solubility value. The possibility of controlling the microstructure of the MABS resin by changing the polarity of the components and the compatibility of two phases was assessed. The dynamic mechanical analysis shows that the compatibility of two phases varies with the MMA content. The morphological analysis shows that increasing MMA contents results in a gradual decrease in the sub-inclusion structure with a network skeleton of rubber particles, and that all the particles become solid rubber when the MMA content reaches 75%. The sub-inclusion structure reappears but does not have a network skeleton when the MMA content is 90%. The impact strength and morphological analysis indicate that the solid rubber particles and the sub-inclusion structure with a network skeleton provide excellent toughness, while the sub-inclusion structure without a network skeleton does not. In contrast, the transmittance of the ABS resin first increased and then decreased with increasing MMA content. 相似文献
995.
Mehrdad Azamian Jazi Ahmad Ramezani S.A. Seyyed Arash Haddadi Saeed Ghaderi Fariba Azamian 《应用聚合物科学杂志》2020,137(15):48570
Polyvinyl acetate (PVAc) nanocomposites for wood adhesives containing different amounts of colloidal silica nanoparticles (CSNs) were synthesized via in situ one-step emulsion polymerization. The adhesion strength of wood specimens bonded by PVAc nanocomposites was investigated by the tensile test. Thermal properties of PVAc nanocomposites were also characterized by differential scanning calorimetry and thermogravimetric analysis. Rheological and morphological properties of the PVAc nanocomposites were investigated using rheometric mechanical spectrometry and field emission scanning electron microscopy (FESEM), respectively. The obtaining results showed that the shear strength of PVAc nanocomposite including 1 wt. % CSNs has the highest shear and tensile strength about 4.7 and 3.2 MPa, respectively. A small increment of Tg (~3 °C) and considerable increment of the ash content proved the enhancement of PVAc thermal characterization in the presence of CSNs. FESEM results showed uniform dispersion of nanoparticles throughout the PVAc matrix due to using the in situ emulsion polymerization process. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48570. 相似文献
996.
This study focused on fabrication of the thermochromic microcapsules and their application to the cotton fabric. In this study, thermochromic systems composed of crystal violet lactone, bisphenol A, and 1-tetradecanol were prepared and microencapsulated by emulsion polymerization method in poly(methyl methacrylate-co-ethylene glycol dimethacrylate-co-glycidyl methacrylate) wall. The microcapsules were analyzed by Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscope, differential scanning calorimetry, and thermogravimetric analysis. Their thermoregulating property was tested by T-history test. The results revealed that microcapsules with smooth surfaces, core–shell structured, and spherical shape were successfully produced. The latent heat storage capacity of the microcapsules decreased from 202 J g−1 to 167 J g−1 when their shell/core ratio changed from 0.5/1 to 2/1. Microcapsules were adequately had sufficient thermal resistance to the temperatures they will encounter during their application to textile products and their usage. According to the UV–visible spectroscopy analysis and color measurements, the microcapsules exhibited reversible color change from blue to colorless and vice versa. Besides, the microcapsule impregnated fabric was able to absorb latent heat energy of 21.79 J g−1 at around 35 °C and had cooling effect. According to the colorimetric parameters, the fabric was at blue color at room temperature and became colorless when heated to the temperature above the melting point of thermochromic system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48815. 相似文献
997.
A facile and effective method was proposed to prepare the molecularly imprinted fluorescence sensor with carbon quantum dots, which were modified vinyl groups by acrylic acid on the surface. The obtained fluorescence composite material was investigated by transmission electron microscope and Fourier transform infrared spectra. After the experimental conditions were optimized, a linear range of 1.0–60 μmol L−1 was obtained and the detection limit was 0.17 μmol L−1. The novel fluorescence sensor can be successfully used to detect tetracycline in real samples. This study provides a convenient strategy for selective recognition and rapid detection of tetracycline in the complex environment. 相似文献
998.
Interactions of hexamethylenetetramine ligand in atom transfer radical polymerization initiated by activator generated by electron transfer were studied. Polymerization of methyl methacrylate was done using two-step experimental procedure in 2 L emulsion batch reactor at 50, 60, and 80°C. The selection of reactant ratios was quite challenging for a reactor of this size. Replicate runs were conducted for data reproducibility purpose. Gravimetry method and gel permeation chromatography were used to determine monomer conversion, Mn, and PDI of polymer samples. PMMA produced was also characterized by means of dynamic light scattering, Fourier-transform infrared spectroscopy and nuclear Magnetic Resonance spectroscopy. Results showed high monomer conversion up to 93% and Mn ranging 243–274 kg/mol with PDI from 1.45 to 1.60. Besides, combining HMTA with sodium dodecyl sulfate, an anionic surfactant, a well-controlled polymer with a lower Mn of 201 kg/mol and PDI of 1.56 was obtained in 3 hr reaction time. 相似文献
999.
Previous studies on polyamide 4, excellent properties, functionalities, and biodegradation in natural condition have been shown. In this study, three-branched (star-shaped) copolyamides constituted of polyamide 4 and polyamide 6 constitutional unit were synthesized by anionic ring-opening copolymerization of 2-pyrrolidone with ε-caprolactam. The thermal and mechanical properties and the biodegradability of the obtained copolyamides have been systematically investigated. The weight-average molecular weight of the copolyamides was as high as tens of thousands (Mw 10–80 × 103 g/mol). The composition of the copolyamides was approximately in accord with the monomer feed ratio, thereby being controllable. The thermal and mechanical properties changed readily as the composition was varied (Tm 146–266°C, ΔHm 10–70 J/g, Td 278–369°C, tensile strength 28–64 MPa, elongation at break 80–750%). The copolyamide having 2-pyrrolidone unit of 96–51 mol% exhibited biodegradability by an activated sludge. The biodegradation of the copolyamide proceeded uniformly without disproportion in constitutional unit. 相似文献
1000.
Optically active hybrid particles consisting of chiral organic component and inorganic component integrate the individual advantages of the components in one entity. This article reports a new type of optically active hybrid particles constructed by helical substituted polyacetylene and octavinyl polyhedral oligomeric silsesquioxane (OvPOSS). The hybrid particles were prepared in a two-step process. First, helical substituted polyacetylene with pendent vinyl groups was synthesized and named as macromonomer (MM). Then, hybrid particles were prepared from MM and OvPOSS by free radical suspension polymerization, in which OvPOSS acted simultaneously as comonomer and crosslinking agent. OvPOSS and MM together constituted a crosslinked network and formed spherical, porous hybrid particles. The resulting hybrid particles exhibited the desired optical activity, according to circular dichroism spectroscopy measurement. As an organic/inorganic hybrid molecule itself, OvPOSS moderately improved the thermostability of the organic component and meanwhile increased the porosity of the hybrid particles. It also helped to tune the surface morphology of the hybrid particles. The present study provides a novel class of optically active hybrid particles, and the preparation strategy may further work as a versatile platform for developing novel chiral hybrid materials. 相似文献