首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   569篇
  免费   241篇
  国内免费   18篇
电工技术   21篇
综合类   58篇
化学工业   412篇
金属工艺   17篇
机械仪表   18篇
建筑科学   55篇
矿业工程   12篇
能源动力   6篇
轻工业   19篇
水利工程   8篇
石油天然气   7篇
武器工业   21篇
无线电   24篇
一般工业技术   21篇
冶金工业   61篇
原子能技术   7篇
自动化技术   61篇
  2024年   3篇
  2023年   2篇
  2022年   4篇
  2021年   55篇
  2020年   28篇
  2019年   23篇
  2018年   35篇
  2017年   45篇
  2016年   62篇
  2015年   79篇
  2014年   77篇
  2013年   53篇
  2012年   34篇
  2011年   35篇
  2010年   33篇
  2009年   36篇
  2008年   21篇
  2007年   27篇
  2006年   26篇
  2005年   12篇
  2004年   16篇
  2003年   28篇
  2002年   10篇
  2001年   20篇
  2000年   11篇
  1999年   11篇
  1998年   4篇
  1997年   5篇
  1996年   7篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   3篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有828条查询结果,搜索用时 15 毫秒
31.
32.
强夯施工中采用隔行夯打的实践   总被引:1,自引:0,他引:1  
本文通过太钢尖山铁矿选矿厂区的强穷地基处理工程实践,对强夯施工中夹击工艺做进一步的探讨,在小于或等于3000kN·m的强夯施工中,主夯点采用隔行夯打,并取得了预期效果。  相似文献   
33.
侯典荟  王红岩  郝贵祥 《兵工学报》2012,33(12):1430-1435
为了研究空降车着陆缓冲过程中的结构强度,采用有限元方法建立了车体-气囊有限元模型,在两种工况下进行仿真计算,获得最大加速度结果,并将有限元仿真与加速度试验结果对比。仿真结果能准确反映空降车着陆缓冲过程,车体冲击加速度满足着陆缓冲过程的要求。进一步得到了正常着陆工况和恶劣着陆工况下车体的应力分布情况,结果表明,车体最大Von Mises应力小于材料的抗拉强度,车体的结构强度满足设计要求。  相似文献   
34.
Impact strength of a modified cardanol‐bonded cellulose thermoplastic resin was greatly improved by using a small amount of olefin resins. As we showed, this thermoplastic resin (3‐pentadecylphenoxy acetic acid (PAA)‐bonded cellulose diacetate (CDA): PAA‐bonded CDA) exhibited high practical properties such as bending strength, heat resistance, and water resistance. However, its impact strength was insufficient for use in durable products. We improved the impact strength of PAA‐bonded CDA by adding hydrophobic olefin resins, such as polyethylene or polypropylene, while maintaining good bending strength and breaking strain. Furthermore, the application of olefin resins also increased water resistance and fluidity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39829.  相似文献   
35.
Bacterial cellulose (BC), microcrystalline cellulose (MCC), and bamboo cellulosic fibers (BCFs) were used to reinforce poly(l ‐lactic acid) (PLLA) based bio‐composites. The mechanical properties and crystallization of the composites were studied through mechanical testing, differential scanning calorimetry, X‐ray diffraction, scanning electron microscopy, and polarizing microscope. The incorporation of all three kinds of cellulose increased the stiffness of the composites compared to pure PLLA. The reinforcing effect of the MCC in the composites is most significant. The Young's modulus and impact toughness of the MCC/PLLA composites were increased by 44.4% and 58.8%, respectively. The tensile strength of the MCC/PLLA composites was increased to 71 MPa from 61 MPa of PLLA. However, the tensile strength of the composites reinforced with BCF or BC was lower than PLLA. The three kinds of cellulosic fibers improved the crystallization of PLLA. The BC with smallest size provided the composites with smallest grain and highest crystallinity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41077.  相似文献   
36.
With growing environmental awareness, ecological concerns and new legislations, natural fiber‐reinforced plastic composites have received increasing attention during the recent decades. The natural fiber composites have many advantages over traditional glass fiber composites, including lower cost, lighter weight, environmental friendliness, and recyclability. This article reports the findings of the studies done on a new fiber, hitherto unexplored, extracted from Saccharum munja grass. The extracted fibers were further treated using sodium hydroxide to improve its performance in composites. Both treated and untreated fiber‐reinforced composites were prepared by hand lay‐up process using unsaturated polyester resin. Mechanical properties and thermal behavior of the composites were evaluated. The improvement in properties was found for alkali‐treated fiber composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40829.  相似文献   
37.
This investigation focuses on the preparation of bio‐based composites from recycled poly (ethylene terephthalate) (PET) and sisal fibers (3 cm, 15 wt %), via thermopressing process. Plasticizers derived from renewable raw materials are used, namely, glycerol, tributyl citrate (TBC) and castor oil (CO), to decrease the melting point of the recycled PET (Tm ∼ 265°C), which is sufficiently high to initiate the thermal decomposition of the lignocellulosic fiber. All used materials are characterized by thermogravimetric analysis and differential scanning calorimetry, and the composites are also characterized via dynamic mechanical thermal analysis. The storage modulus (30°C) and the tan δ peak values of CT [PET/sisal/TBC] indicate that TBC also acts as a compatibilizing agent at the interface fiber/PET, as well as a plasticizer. To compare different processing methods, rheometry/thermopressing and compression molding are used to prepare the recycled PET/sisal/glycerol/CO composites. These two different methods of processing show no significant influence on the thermal properties of these composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40386.  相似文献   
38.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   
39.
The impact strength of cellulose diacetate (CDA) bonded with a modified cardanol (3‐pentadecylphenoxy acetic acid: PAA) was greatly improved up to 9 kJ/m2 by adding a relatively small amount of modified silicones while suppressing a decrease in bending strength. In our recent research, this thermoplastic resin (PAA‐bonded CDA) exhibited high rigidity, glass transition temperature, and water resistance. However, its impact strength was insufficient for use in durable products. Therefore, silicones modified with polyether, amino, and epoxy groups were investigated as possible ways to improve the impact strength. The results show that adding polyether‐modified silicone (polyether silicone) with moderate polarity relative to PAA‐bonded CDA resulted in shearing deformation greatly enhances its impact strength while maintaining other properties, including glass transition temperature (Tg), water resistance, and thermoplasticity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40366.  相似文献   
40.
Microfibrillated cellulose (MFC) is increasingly used with cellulosic substrates and especially with paper materials. Its use with cardboard remains not reported and the study of mechanical and barrier properties of MFC‐coated cardboard has been investigated in this article. The influence of coating process as well as the effect of MFC have been highlighted by comparing different MFC‐coated cardboard samples with PE‐coated cardboard samples. MFC was coated using bar coating process. Their distribution and homogeneity onto cardboard was observed using techniques such as SEM and FE‐SEM. Tests such as oxygen and air permeability, bending stiffness, and compressive strength have been carried out. The coating process used impacts significantly cardboard properties by two opposite ways: on one hand it damages the structure cohesion of cardboard decreasing its compressive strength; on the other hand it increases its bending stiffness by increasing considerably the samples thickness. The addition of MFC counterbalances the negative effects of the coating process: bending stiffness and compressive strength are indeed improved by 30% in machine direction. On the contrary, MFC does not enhance much cardboard barrier properties, although it considerably increases their water absorption. Within a framework of packaging application, MFC will rather have consequent effects on cardboard's properties as blend or as part of the multilayer structure. Other applications have to be considered for its use as top layer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40106.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号