首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69502篇
  免费   9229篇
  国内免费   5769篇
电工技术   6732篇
技术理论   3篇
综合类   6611篇
化学工业   13091篇
金属工艺   3433篇
机械仪表   5385篇
建筑科学   3434篇
矿业工程   2341篇
能源动力   5797篇
轻工业   1980篇
水利工程   5634篇
石油天然气   4434篇
武器工业   939篇
无线电   3124篇
一般工业技术   6827篇
冶金工业   3719篇
原子能技术   1783篇
自动化技术   9233篇
  2024年   374篇
  2023年   1130篇
  2022年   2103篇
  2021年   2447篇
  2020年   2672篇
  2019年   2351篇
  2018年   2212篇
  2017年   2776篇
  2016年   3025篇
  2015年   3180篇
  2014年   4154篇
  2013年   4908篇
  2012年   4997篇
  2011年   5607篇
  2010年   3973篇
  2009年   4232篇
  2008年   3859篇
  2007年   4474篇
  2006年   4089篇
  2005年   3561篇
  2004年   2914篇
  2003年   2528篇
  2002年   2063篇
  2001年   1782篇
  2000年   1517篇
  1999年   1320篇
  1998年   1072篇
  1997年   877篇
  1996年   815篇
  1995年   721篇
  1994年   601篇
  1993年   481篇
  1992年   404篇
  1991年   238篇
  1990年   261篇
  1989年   193篇
  1988年   132篇
  1987年   103篇
  1986年   65篇
  1985年   42篇
  1984年   52篇
  1983年   40篇
  1982年   28篇
  1981年   11篇
  1980年   12篇
  1979年   25篇
  1977年   4篇
  1975年   5篇
  1959年   28篇
  1951年   33篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
A general variance predictor for Cavalieri slices   总被引:1,自引:0,他引:1  
A general variance predictor is presented for a Cavalieri design with slices of an arbitrary thickness t ≥ 0. So far, prediction formulae have been available either for measurement functions with smoothness constant q = 0, 1, … , and t ≥ 0, or for fractional q ∈ [0, 1] with t = 0. Because the possibility of using a fractional q adds flexibility to the variance prediction, we have extended the latter for any q ∈ [0, 1] and t ≥ 0. Empirical checks with previously published human brain data suggest an improved performance of the new prediction formula with respect to the hitherto available ones.  相似文献   
92.
A cellular automata model is used to simulate a variety of granular chute flows. The model is tested against several case studies: flow down a chute, flow past an obstacle, chute flow in which complex, counter-rotating vortices result in streamwise surface stripes and flow near a boundary. The model successfully reproduces experimental observations in all of these cases. These results lead us to propose that simple, rule-based, models such as this can improve our detailed understanding of dynamics and flow within an opaque granular bed.  相似文献   
93.
It is mentioned in this paper that the adjustment of flow structure occurs when themain-flow swings.The changes of turbulence structure and flow energy loss in the indoor rivermodel are measured.The experimental data are presented for the first time for the further studyof complicated river flow structure.  相似文献   
94.
Measurement of the flow stress of high density polyethylene (HDPE) and nylon 66 at strain rates of 103 s?1 using a split Hopkinson pressure bar technique is discussed. The flow stress at a strain of 10% has been determined for both polymers at 20°C. The intrinsic errors involved in this technique are briefly reviewed. The results indicate that the flow stress of HDPE and nylon 66 were 50MPa and 150MPa, respectively, at strain rates of about 103s?1.  相似文献   
95.
The process of dispensing one-component heat-cure adhesives was investigated in order to understand current application processes and to guide new process development. Typical one-component adhesives exhibit non-Newtonian rheological behavior, and hence Newtonian fluid mechanics does not adequately describe the dispensing process. In the present study, the adhesives were modeled as Bingham fluids possessing a yield stress and a steady state viscosity. The model of the dispensing apparatus includes four major flow sections connected in a serial configuration. The fluid mechanics equations derived for Bingham fluids in the individual flow sections were solved by numerical methods in order to understand the interrelationships between the material variables (e.g. yield stress, viscosity, temperature dependencies) and process variables (e.g. pressure, flow geometry, temperature, output). The concept of the model is generic and the details of the model can be modified for any forced-flow adhesive application process.

The adhesive flow properties significantly influence the process output. Dispensing temperature, among the process variables, has the strongest effect on process output. A ± 1.0·C perturbation in the dispensing temperature can cause as much as a 14% variation in the bead size for the range of adhesives studied. Differences in flow characteristics result in differences in processability and non-linear temperature/pressure sensitivity. The non-linear sensitivity can be eliminated by operating the dispensing process isothermally. Finally, the process limits for one-component adhesives, which are susceptible to chemical instability induced by viscous heating during processing, are defined and discussed in terms of a modified Brinkman number that takes into account viscous dissipation, heat conduction and convection, and chemical stability of the material during processing.  相似文献   
96.
In a recent discovery, coaxial electrospinning was explored to encapsulate living organisms within a continuous bio‐polymeric microthread from which active biological scaffolds were fabricated (Townsend‐Nicholson and Jayasinghe, Biomacromolecules 2006, 7, 3364). The cells were demonstrated to have gone through all expected cellular activity without their viability being compromised. These biologically active threads and scaffolds have direct and tremendous applicability from regenerative to therapeutic medicine. Currently these post‐processed cells as composite threads and scaffolds are being investigated in‐depth at a cellular level to establish if the processing methodology has any affect on the cellular make‐up. We now demonstrate a competing non‐electric field driven approach for fabricating composite threads and scaffolds influenced only by a differential pressure. We refer to this novel composite thread to scaffold fabrication methodology as coaxial aerodynamically assisted bio‐threading (CAABT). Our investigations firstly, demonstrate that this technique can process handle living organisms without biologically perturbing them in anyway. Secondly the process is elucidated as possessing the ability to form composite active threads from which biologically viable scaffolds are formed. Finally our study employs florescent activated cell sorting (FACScan), a method by which the cellular dynamics and viability are quantified on control and threaded cellular samples at two prescribed time points. In parallel with FACScan, optical comparison of cellular morphology at three time points within a period of three weeks is carried out to photographically observe any changes in the post‐processed cellular phenotype. Our developmental investigations into this novel aerodynamically assisted threading methodology has unearthed a unique biomicrofabrication approach, which joins cell electrospinning in the cell threading to scaffold fabrication endeavor. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
97.
If a low weight percentage of crude fine fillers can improve properties of polymer materials directly without complicated chemical treatment process involved, it will be significant for many industrial applications. Our previous study indicated that a kind of Cancun natural sand could be an effective filler material for polymer composites. In this current work, the epoxy composites reinforced by this kind of natural sand particles were prepared and thermal and mechanical properties of the composites containing up to 5 wt % of the sand particles were characterized. Results showed that the highest flexural strength appears in the epoxy composite containing 1 wt % sand particles. A damage model was used to interpret the flexural properties, which showed an acceptable agreement with the experimental results. The glass transition temperature, high temperature storage modulus, and dimensional stability of the sand/epoxy composites monotonically increased with the addition of the sand particles. The sand particle/epoxy composites also displayed a noticeable enhancement in thermal conductivity. Theoretical analysis showed that in addition to conduction, other heat transport mechanisms played roles in the improved heat transmission through the composites. As a natural porous micron-scale material, Cancun sand has the potential for applications in cost-effective composites with enhanced mechanical and thermal properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
98.
99.
Wear of ultrahigh‐molecular‐weight polyethylene (UHMWPE) and wear‐particle‐induced osteolysis and bone resorption are the major factors causing the failure of total joint replacements. It is feasible to improve the lubrication and reduce the wear of artificial joints. We need further understanding of the lubrication mechanism of the synovial fluid. The objective of this study is to evaluate the lubricating ability of three major components in the synovial fluid: albumin, globulin, and phospholipids. An accelerated wear testing procedure in which UHMWPE is rubbed against a microfabricated surface with controlled asperities has been developed to evaluate the lubrication behavior. An analysis of the wear particle dimensions and wear amount of the tests has provided insights for comparing their lubrication performance. It is concluded that the presence of biomolecules at the articulating interface may reduce friction. A higher concentration of a biological lubricant leads to a decrease in the wear particle width. In addition, in combination with the wear results and mechanical analysis, the roles of individual biomolecules contributing to friction and wear at the articulating interface are discussed. These results can help us to identify the role of the biomolecules in the boundary lubrication of artificial joints, and further development of lubricating additives for artificial joints may be feasible. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
100.
Sheet molding compound (SMC) is a fiber‐reinforced polymeric composite. It is often used in automotive, marine, and industrial applications over other materials because of its high strength to density ratio, resistance to corrosion, and low cost. There is a demand in the SMC industry to be able to characterize SMC processability. This is particularly true for heavy truck body panels, one of the fastest growing applications of SMC. Because of their large size and high strength requirement, the molding forces have a major influence in the molding cycle. Also because of the long flow paths involved, the ability of the paste to carry glass needs to be properly characterized when developing new SMC materials. In this article, we demonstrate the benefits of using spiral flow as a processability tester. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号