全文获取类型
收费全文 | 1048篇 |
免费 | 1篇 |
专业分类
建筑科学 | 1039篇 |
一般工业技术 | 10篇 |
出版年
2023年 | 43篇 |
2022年 | 6篇 |
2021年 | 60篇 |
2020年 | 86篇 |
2019年 | 73篇 |
2018年 | 61篇 |
2017年 | 74篇 |
2016年 | 81篇 |
2015年 | 81篇 |
2014年 | 51篇 |
2013年 | 52篇 |
2012年 | 54篇 |
2011年 | 89篇 |
2010年 | 41篇 |
2009年 | 69篇 |
2008年 | 1篇 |
2007年 | 1篇 |
2003年 | 3篇 |
2002年 | 7篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 5篇 |
1998年 | 7篇 |
1997年 | 11篇 |
1996年 | 19篇 |
1995年 | 5篇 |
1994年 | 8篇 |
1990年 | 5篇 |
1989年 | 7篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 7篇 |
1985年 | 10篇 |
1984年 | 1篇 |
1983年 | 4篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 5篇 |
1978年 | 4篇 |
1977年 | 1篇 |
1976年 | 5篇 |
1975年 | 2篇 |
排序方式: 共有1049条查询结果,搜索用时 0 毫秒
641.
Gerhard Rinnhofer Stefan L. Burtscher Johann Kollegger 《Beton- und Stahlbetonbau》2009,104(9):599-608
642.
Ultra‐Hochleistungs‐Faserbetone (UHFB) eignen sich aufgrund ihrer hohen Festigkeiten, des hohen Verformungsvermögens und der geringen Permeabilität zur Verbesserung und Instandsetzung bestehender Betonbauten. Mit dünnen Schichten von bewehrtem UHFB, die auf bestehende Stahlbetonbauteile aufgetragen werden, können der Tragwiderstand und die Gebrauchstauglichkeit deutlich gesteigert werden. In einer umfangreichen Versuchsreihe wurden die Eigenschaften von mit zusätzlich zu den Fasern auch mit Stabstahl bewehrtem UHFB untersucht. Die Bewehrung des UHFB mit Stabstählen ist vorteilhaft, um den Verfestigungsbereich des UHFB zu erweitern, seinen Tragwiderstand zu erhöhen und die Streuung seiner mechanischen Eigenschaften zu reduzieren. Zur Bewehrung können hoch‐ oder niederfeste Stähle mit unterschiedlichen Oberflächenstrukturen zum Einsatz kommen. Abschließend werden zwei Anwendungen vorgestellt. Structural Behaviour of Composite Elements Combining Reinforced Ultra‐High Performance Fibre‐Reinforced Concrete (UHPFRC) and Reinforced Concrete Due to their high strengths, high deformability and low permeability Ultra‐High Performance Fibre‐Reinforced Concretes (UHPFRC) are suitable for the improvement and rehabilitation of existing concrete structures. Thin layers of reinforced UHPFRC that are applied to existing concrete members, increase both the load bearing capacity and the serviceability. By comprehensive experimental studies the behaviour of UHPFRC with additional bar reinforcement was investigated. The reinforcement of UHPFRC is advantageous in order to increase the strain hardening capacity of UHPFRC, its load bearing capacity and to reduce the scatter of its mechanical properties. Low or high strength steel grades with various surface characteristics can be used as reinforcement of UHPFRC. Finally two on site applications are presented. 相似文献
643.
Ekkehard Fehling Torsten Leutbecher Friedrich‐Karl Rder 《Beton- und Stahlbetonbau》2009,104(8):471-484
Während die Druckfestigkeit des Betons durch gleichzeitig wirkenden Querdruck gegenüber der einaxialen Druckfestigkeit erheblich gesteigert werden kann, führen Querzugbeanspruchung und Rissbildung zu einer Abminderung der Tragfähigkeit. Dies gilt für unbewehrten Beton und Stahlbeton gleichermaßen. In den einschlägigen Regelwerken finden sich hierzu international sehr unterschiedliche Bemessungsansätze, wobei die vorgesehenen Abminderungsbeiwerte für denselben Anwendungsfall um das bis zu Zweifache differieren. Die Frage der Druck‐Zug‐Festigkeit von Stahlbeton wurde in den vergangenen 40 Jahren von zahlreichen Wissenschaftlern untersucht. Ihre Ergebnisse sind allerdings zum Teil ebenso widersprüchlich wie die aktuelle Normensituation. Basierend auf eigenen experimentellen Untersuchungen sowie einer kritischen Auswertung und Einordnung als richtungweisend angesehener, früherer Versuchsreihen wird ein Vorschlag zur Abminderung der Druckfestigkeit des gerissenen Stahlbetons entwickelt. Erstmals wird dabei auch der Einfluss einer Faserzugabe in Kombination mit Stabstahlbewehrung berücksichtigt. Ein Vergleich mit den in DIN 1045‐1, CEB‐FIP Model Code 1990, Eurocode 2 und ACI Standard 318‐05 angegebenen Bemessungsregeln zeigt, dass allein DIN 1045‐1 die in den Versuchen beobachtete maximale Abminderung der Druckfestigkeit durch Querzug und Rissbildung zum Teil erheblich unterschätzt, so dass eine konservative Auslegung der Tragwerke nicht immer sichergestellt ist. Biaxial Compression‐Tension‐Strength of Reinforced Concrete and Reinforced Steel Fibre Concrete The compressive strength of concrete can be substantially increased in relation to uni‐axial compressive strength by transverse compression acting at the same time. In contrast, transverse tension and cracking lead to a reduction of the load‐carrying capacity. This holds true for plain concrete as well as for reinforced concrete. In international standards very different calculation rules can be found on this subject, whereby the provided reductions differ up to a factor of two for the same application. The question of biaxial compression‐tension‐strength of reinforced concrete was examined in the past 40 years by numerous scientists. Their results are, however, partially contradictory in the same way as the current standard situation. Based on own experimental investigations as well as on a critical review and classification of former test series regarded as trend‐setting, a proposal for the reduction of the compressive strength of cracked reinforced concrete is developed. For the first time, also the influence of fibres in addition to bar reinforcement is considered thereby. A comparison with the calculation rules in DIN 1045‐1, CEB‐FIP Model Code 1990, Eurocode 2, and ACI Standard 318‐05 shows, that exclusively DIN 1045‐1 underestimates sometimes substantially the maximum reduction of the compressive strength by transverse tension and cracking observed in the tests, so that a conservative design of structures cannot always be ensured. 相似文献
644.
645.
646.
647.
648.
649.
650.