首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12255篇
  免费   1817篇
  国内免费   611篇
电工技术   99篇
技术理论   1篇
综合类   995篇
化学工业   4105篇
金属工艺   176篇
机械仪表   158篇
建筑科学   2220篇
矿业工程   2335篇
能源动力   135篇
轻工业   1060篇
水利工程   521篇
石油天然气   977篇
武器工业   2篇
无线电   57篇
一般工业技术   657篇
冶金工业   968篇
原子能技术   115篇
自动化技术   102篇
  2024年   48篇
  2023年   159篇
  2022年   302篇
  2021年   497篇
  2020年   477篇
  2019年   384篇
  2018年   422篇
  2017年   448篇
  2016年   489篇
  2015年   582篇
  2014年   701篇
  2013年   748篇
  2012年   794篇
  2011年   876篇
  2010年   688篇
  2009年   680篇
  2008年   615篇
  2007年   805篇
  2006年   759篇
  2005年   695篇
  2004年   582篇
  2003年   492篇
  2002年   410篇
  2001年   312篇
  2000年   319篇
  1999年   270篇
  1998年   229篇
  1997年   165篇
  1996年   119篇
  1995年   115篇
  1994年   105篇
  1993年   61篇
  1992年   71篇
  1991年   56篇
  1990年   50篇
  1989年   25篇
  1988年   24篇
  1987年   10篇
  1986年   10篇
  1985年   18篇
  1984年   18篇
  1983年   16篇
  1982年   14篇
  1981年   6篇
  1980年   3篇
  1979年   11篇
  1977年   1篇
  1976年   1篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Dipole-dipole and/or hydrogen-bonding interactions between the pendant functional groups within maleated high-density polyethylene (PE-g-MAn) establish a physical polymer network, whose formation kinetics and shear-sensitivity are revealed by dynamic oscillatory testing. The pronounced time and shear dependent viscoelastic properties of PE-g-MAn were not observed for a corresponding imide derivative, PE-g-imide, presumably due to weakened functional group associations in the latter material.The melt compounding of PE-g-MAn with onium-ion exchanged montmorillonite clay (NR4+-MM) resulted in a partially exfoliated hybrid nanocomposite structure, whose viscoelastic behaviour differed significantly from that of the unfilled polymer. The presence of dispersed clay platelets altered the extent of functional group associations, thereby changing the dynamics of network formation.  相似文献   
102.
The linear viscoelastic properties of copolypropylene (cPP)–clay nanocomposites (cPPCNs) prepared by melt intercalating with different amounts of clay were extensively examined by rheological measurements. Meanwhile, the clay effects on the cPP confinements were first estimated by calculating the activation energy of different cPP moving units, including the whole molecular chain, the chain segment, and smaller unit such as chain link. The results showed that the stability of cPPCNs melts wrecked when the clay loading was above 5 wt %. An increase in clay loading of cPPCNs gave rise to a strong low frequency solid‐like response (G′ > G″). Unlike the matrix polymer, cPPCN5 (with 5 wt % clay) exhibited a relaxation plateau as relaxation time prolonged above 100 s, and displayed a maximal linear modulus. The variations of the activation energy of different cPP moving units revealed that the mobility of cPP molecular chains was restricted by clay layers, while these restrictions were not only related to the clay loadings but also largely depended on the clay dispersion status in the matrix. The motions of cPP chain segments were greatly limited at 3–5 wt % loading of clay, but drastically activated with the addition of 7 wt % clay due to the increasing stacks of clay layers within the matrix. However, it was found that the presence of clay had little effect on the mobility of small cPP moving units such as chain links. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1523–1529, 2006  相似文献   
103.
A series of polymer–clay nanocomposite (PCN) materials consisting of 1,4‐bis(4‐aminophenoxy)‐2‐tert‐butylbenzene–4,4′‐oxydiphthalic anhydride (BATB–ODPA) polyimide (PI) and layered montmorillonite (MMT) clay were successfully prepared by an in situ polymerization reaction through thermal imidization up to 300°C. The synthesized PCN materials were subsequently characterized by Fourier‐Transform infrared (FTIR) spectroscopy, wide‐angle powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of material composition on thermal stability, mechanical strength, molecular permeability and optical clarity of bulk PI and PCN materials in the form of membranes were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), molecular permeability analysis (GPA) and ultraviolet‐visible (UV/VIS) transmission spectra, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1072–1079, 2004  相似文献   
104.
A hydrogel incorporating the hydrophilic polymer poly(ethylene glycol) and a copolymer of acrylamide and styrene was synthesized, and the dynamics of the water‐sorption process were studied. The effects of the composition of the hydrogel and the temperature of the swelling medium were investigated with respect to the water‐sorption characteristics of the hydrogel, and the kinetic parameters, including the swelling exponent and diffusion constant, were evaluated. The hydrogel was also judged for the antithrombogenic property of its surface. The experimental findings were explained on the basis of the core–shell polymeric structure of the hydrogel. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1419–1428, 2002  相似文献   
105.
利用高铝矾土研制低温耐磨氧化铝瓷   总被引:3,自引:0,他引:3  
着重介绍了以高铝矾土为主要原料的85瓷的合理配方和所采用的生产工艺,并对吸水率、体积密度、耐磨性、显微硬度、抗折强度和断裂韧性等物理性能进行了测试。还探讨了低温烧成机理、提高耐磨性的途径。结合显微结构分析了生产工艺对产品性能的影响。  相似文献   
106.
Through the addition of N‐hydroxymethyl acrylamide as a potential crosslinker, water‐absorptive blend fibers of copoly(acrylic acid–acrylamide) and poly(vinyl alcohol) with three‐dimensional network structures were prepared with heat‐crosslinking technology after fiber formation. Fourier transform infrared, scanning electron microscopy, dynamic mechanical analysis, and thermogravimetry were used to analyze the structures and properties of the fibers. The tensile behavior and absorbent capacities of the fibers were also studied. The results showed that there were lots of chemical crosslinking points in the fibers, the compatibility of copoly(acrylic acid–acrylamide) and poly(vinyl alcohol) was perfect, and the tensile properties of the fibers could be improved effectively through stretching in a vapor bath. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3353–3357, 2006  相似文献   
107.
This study covers the crosslinking of poly(ethylene oxide) (PEO) and its composite with calcium hydroxyapatite (HA), their mechanical and swelling properties, and morphology. Sheets of the composites of PEO (two different grades with Mv: 5 × 106 and 2 × 105) and HA and neat PEO were prepared by compression molding. The prepared composite and PEO (0.1‐mm‐thick) sheets were crosslinked with exposure of UV‐irradiation in the presence of a photoinitiator, acetophenone (AP). This simple method for crosslinking, induced by UV‐irradiation in the presence of AP, yielded PEO with gel content up to 90%. Gel content, equilibrium swelling ratio, and mechanical and morphological properties of the low molecular weight polyethylene oxide (LMPEO)–HA crosslinked and uncrosslinked composites were evaluated. Although the inclusion of HA into LMPEO inhibits the extent of crosslinking, the LMPEO–HA composite with 20% HA by weight shows the highest gel content, with appreciable equilibrium swelling and mechanical strength. The growth of HA in simulated body fluid solutions on fractured surfaces of LMPEO and also LMPEO–HA was found to be very favorable within short times. The dimensional stability of these samples was found to be satisfactory after swelling and deposition experiments. The good compatibility between the filler hydroxyapatite and poly(ethylene oxide) makes this composite a useful tissue‐adhesive material. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 488–496, 2003  相似文献   
108.
A poly(ethylene terephthalate) (PET)/montmorillonite clay nanocomposite was synthesized via in situ polymerization. Microscopic studies revealed that in an isothermal crystallization process, some crystallites in the nanocomposite initially were rod‐shaped and later exhibited three‐dimensional growth. The crystallites in the nanocomposite were irregularly shaped, rather than spherulitic, being interlocked together without clear boundaries, and they were much smaller than those of neat PET. With Avrami analysis, the isothermal crystallization kinetic parameters (the Avrami exponent and constant) were obtained. The rate constants for the nanocomposite demonstrated that clay could greatly increase the crystallization rate of PET. The results for the Avrami exponent were consistent with the observation of the rodlike crystallites in the PET/clay nanocomposite during the initial stage. Wide‐angle X‐ray scattering and Fourier transform infrared studies showed that, in comparison with neat PET, the crystal lattice parameters and crystallinity of the nanocomposite did not change significantly, whereas more defects may have been present in the crystalline regions of the nanocomposite because of the presence of the clay. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1381–1388, 2004  相似文献   
109.
吸水树脂PAA/AM的合成研究   总被引:2,自引:0,他引:2  
以N,N-亚甲基双丙烯酰胺(Bis)为交联剂,过硫酸钾(KPS)做引发剂,以丙烯酸(AA),丙烯酰胺(AM)为反应单体水溶液聚合法合成了适用于淡水和盐水的吸水膨胀聚合物。采用正交实验法对最佳吸水膨胀配方进行了优选:单体浓度[M]=30%;单体中和度N=75%;引发剂浓度[I]=0.15%;交联剂浓度[C]=0.011%;反应温度为75℃及反应时间3h。对PAA的吸液速率进行了测定,并讨论了它的反复吸液能力。  相似文献   
110.
Modulated temperature differential scanning calorimetry is used to explore the interactions between a poly(amide) 6 matrix and various types of clay reinforcement. During quasi-isothermal crystallization of the polymer/clay nanocomposites, an excess contribution is observed in the recorded heat capacity signal, due to reversible melting and crystallization. It is proposed that the magnitude of this excess contribution can be used to qualify the polymer/clay interfacial interaction, as it is directly linked to the segmental mobility of the polymer chains in the interphase region, where both the crystalline and amorphous polymer fractions are affected. It is shown that the interfacial interaction strongly depends on the type of clay filler used. These interactions play a key role in the development of specific material properties for the different types of nanocomposites. A simple interphase model for the poly(amide) 6/clay nanocomposites is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号