首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97678篇
  免费   7830篇
  国内免费   4342篇
电工技术   2903篇
技术理论   5篇
综合类   6502篇
化学工业   26112篇
金属工艺   11387篇
机械仪表   5444篇
建筑科学   5314篇
矿业工程   3254篇
能源动力   3277篇
轻工业   9395篇
水利工程   1416篇
石油天然气   4554篇
武器工业   682篇
无线电   3971篇
一般工业技术   8891篇
冶金工业   7168篇
原子能技术   803篇
自动化技术   8772篇
  2024年   337篇
  2023年   1294篇
  2022年   2198篇
  2021年   2791篇
  2020年   2966篇
  2019年   2447篇
  2018年   2163篇
  2017年   2688篇
  2016年   3002篇
  2015年   3156篇
  2014年   5547篇
  2013年   5992篇
  2012年   6737篇
  2011年   7399篇
  2010年   5358篇
  2009年   5688篇
  2008年   4936篇
  2007年   6281篇
  2006年   5958篇
  2005年   5114篇
  2004年   4399篇
  2003年   3906篇
  2002年   3394篇
  2001年   2932篇
  2000年   2479篇
  1999年   1959篇
  1998年   1570篇
  1997年   1236篇
  1996年   1198篇
  1995年   887篇
  1994年   777篇
  1993年   558篇
  1992年   508篇
  1991年   417篇
  1990年   313篇
  1989年   224篇
  1988年   167篇
  1987年   122篇
  1986年   107篇
  1985年   87篇
  1984年   89篇
  1983年   56篇
  1982年   59篇
  1981年   55篇
  1980年   57篇
  1979年   33篇
  1978年   28篇
  1977年   32篇
  1975年   24篇
  1951年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Self-adaptive surface measurements that can reduce data redundancy and improve time efficiency are in high demand in many fields of science and technology. For this purpose, a system implemented with Gaussian process (GP) adaptive sampling is developed. The non-parametric GP model is applied to reconstruct the topography and guide the subsequent sampling position, which is determined from the inference uncertainty estimation. A criterion is proposed to terminate the GP adaptive measurement automatically without any prior model or data of the topography. Experiments on typical surfaces validate the intelligence, adaptability, and high accuracy of the GP method along with the stabilization of the automatic iteration termination. Compared with traditional raster sampling, data redundancy is reduced and the time efficiency is improved without sacrificing the surface reconstruction accuracy. The proposed method can be implemented in other systems with similar measurement principles, thus benefitting surface characterizations.  相似文献   
42.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
43.
In the first part of this paper, we investigate the use of Hessenberg-based methods for solving the Sylvester matrix equation AX+XB=C. To achieve this goal, the Sylvester form of the global generalized Hessenberg process is presented. Using this process, different methods based on a Petrov–Galerkin or on a minimal norm condition are derived. In the second part, we focus on the SGl-CMRH method which is based on the Sylvester form of the Hessenberg process with pivoting strategy combined with a minimal norm condition. In order to accelerate the SGl-CMRH method, a preconditioned framework of this method is also considered. It includes both fixed and flexible variants of the SGl-CMRH method. Moreover, the connection between the flexible preconditioned SGl-CMRH method and the fixed one is studied and some upper bounds for the residual norm are obtained. In particular, application of the obtained theoretical results is investigated for the special case of solving linear systems of equations with several right-hand sides. Finally, some numerical experiments are given in order to evaluate the effectiveness of the proposed methods.  相似文献   
44.
李夏 《云南化工》2019,(6):162-163
结合不同改性剂掺量单因素试验,确定了采用88mm叶轮、115mm容器、圆盘锯齿式搅拌器(转速1400r/min)、175℃共混温度、改性剂掺量4.27%、单次搅拌300g的制备工艺参数。在此条件下制备的聚氨酯改性沥青具有优异的水稳定性、储存稳定性且耐老化、耐高温,拥有比普通聚合物改性沥青更高的车辙因子G*/sinδ和15℃动态模量,基本满足高模量沥青要求。  相似文献   
45.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
46.
The rate of penetration (ROP) model is of great importance in achieving a high efficiency in the complex geological drilling process. In this paper, a novel two-level intelligent modeling method is proposed for the ROP considering the drilling characteristics of data incompleteness, couplings, and strong nonlinearities. Firstly, a piecewise cubic Hermite interpolation method is introduced to complete the lost drilling data. Then, a formation drillability (FD) fusion submodel is established by using Nadaboost extreme learning machine (Nadaboost-ELM) algorithm, and the mutual information method is used to obtain the parameters, strongly correlated with the ROP. Finally, a ROP submodel is established by a neural network with radial basis function optimized by the improved particle swarm optimization (RBFNN-IPSO). This two-level ROP model is applied to a real drilling process and the proposed method shows the best performance in ROP prediction as compared with conventional methods. The proposed ROP model provides the basis for intelligent optimization and control in the complex geological drilling process.  相似文献   
47.
Transition metal oxyhydroxides have been used as promising electrocatalysts for water splitting however, their catalytic activity is restricted due to low surface area and poor conductivity. Herein, we report novel composite FeOOH@ZIF-12/graphene composite as electrocatalyst for water oxidation, whereby ZIF-12 provide extra surface for the FeOOH dispersion whilst graphene act as excellent electron mediator. The composite shows a low overpotential value of 291 mV to attain a current density of 10 mA cm?2 and a low Tafel slope value of 78 mV dec?1. The catalyst offers a maximum current density of 101 mA cm?2, while it gives a turnover frequency (TOF) value of 0.031 s?1 at an overpotential of 291 mV only. The excellent activity and remarkable stability of composite is attributed to highly conductive and porous support.  相似文献   
48.
Recently, ceramic matrix composites reinforced by short carbon fibers (CFs) attracted increasing attentions. To further improve mechanical properties and oxidation resistances, CFs were subjected to oxidation and acidification followed by sol-gel dip-coating to deposit ZrO2 on their surfaces. ZrO2-Cf/SiC composites were fabricated by joint hot compression molding and sintering, compared to Cf/SiC and SiC prepared by the same method. Microstructural analyses indicated that ZrO2 coatings were successfully deposited on CF surfaces, formed strong bonding and interfaces between CF and the matrix. Meanwhile, CFs were found uniformly distributed in SiC matrix with random orientations. Flexural curves of ZrO2-Cf/SiC and Cf/SiC revealed the presence of “false plasticity” regions after sharp drops, which were quite different from brittle flexural behavior of SiC ceramic. Compression strength of the three samples showed step-up growth. ZrO2-Cf/SiC exhibited the highest value, indicating the introduction of CFs and ZrO2 coatings do have great influence on mechanical performances. After heat treatment, ZrO2-Cf/SiC exhibited better oxidation resistance than Cf/SiC, with weight loss ratios estimated to ??3.76% and ??6.43%, respectively. These improved properties indicated that ZrO2-Cf/SiC would be excellent alternatives to other existence materials under ultra-high temperature environments.  相似文献   
49.
The glassy carbon electrode is modified by poly(brilliant cresyl blue) (PBCB) to be applied as a new green and efficient platform for Pt and Pt–Ru alloy nanoparticles deposition. Surface composition, morphology and catalytic activity of these modified electrodes towards methanol oxidation are assessed by applying X-ray diffraction, field emission scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy techniques. The X-ray diffraction patterns reveal that the highly crystalline Pt and Pt–Ru alloy and RuO2 nanoparticles with low crystallinity are deposited on the PBCB modified glassy carbon electrodes. The microscopic images indicate smaller size and better distribution of deposited nanoparticles on the surface of PBCB modified electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy results reveal that PBCB supported Pt and Pt–Ru nanoparticles have better electrocatalytic performance and durability towards methanol oxidation rather than the unsupported nanoparticles. From the obtained results it can be concluded that the presence of PBCB not only improves the stability of nanoparticles on the surface, but also leads to the formation of smaller size and more uniform distribution of nanoparticles on the surface, which, in turn, cause the nanoparticles to provide a higher accessible surface area and more active centers for the oxidation of methanol. The results will be valuable in extending the applications of this polymer in surface modification steps and in developing promising catalyst supports to be applied in direct methanol fuel cells.  相似文献   
50.
Hams from Landrace, Duroc and Hampshire pigs slaughtered at ages 6, 7.5 and 9 months were processed to generate Norwegian Parma‐style hams. Lipid contents and the compositions of fatty acid classes (ΣSFA, ΣMUFA, ΣPUFA) within neutral lipids, phospholipids and free fatty acids were determined. Small differences in lipid degradation and composition of the classes were revealed. However, significant sensory differences related to lipids were observed. Breed was more important than age. Dry‐cured Hampshire hams gave a more intense mature odour that may be associated with higher overall lipid degradation. Unexpectedly, these hams also demonstrated high juiciness and tenderness, which could be related to the melting characteristics of the fat. Dry‐cured Duroc hams showed a higher susceptibility towards rancidity, presumably associated with preferential oxidation of n‐6 fatty acids relative to C18:1 n‐9. Dry‐cured Landrace hams showed the lowest juiciness and tenderness, likely due to their lower fat content (marbling).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号