首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   9篇
  国内免费   30篇
综合类   10篇
化学工业   194篇
金属工艺   50篇
机械仪表   10篇
建筑科学   3篇
矿业工程   5篇
能源动力   35篇
轻工业   18篇
石油天然气   78篇
无线电   23篇
一般工业技术   110篇
冶金工业   6篇
原子能技术   3篇
自动化技术   6篇
  2024年   1篇
  2023年   13篇
  2022年   21篇
  2021年   26篇
  2020年   23篇
  2019年   23篇
  2018年   20篇
  2017年   20篇
  2016年   13篇
  2015年   20篇
  2014年   26篇
  2013年   30篇
  2012年   24篇
  2011年   48篇
  2010年   29篇
  2009年   24篇
  2008年   33篇
  2007年   28篇
  2006年   34篇
  2005年   12篇
  2004年   7篇
  2003年   24篇
  2002年   5篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
排序方式: 共有551条查询结果,搜索用时 15 毫秒
21.
Surface textured Si doped TiCN coatings were synthesised on Ti–6Al–4V alloy by laser cladding technique. Phase constituent examination by X-ray diffraction revealed the formation of similar phases of TiC0.2N0.8 and Ti5Si4 within all coated samples. Laser coated samples presented much higher surface free energy compared to Ti–6Al–4V control due to the textured structure, which in turn demonstrated a better wettability and improved biomineralisation. Variation of silica content presented no significant influence on surface free energy, indicating that the silica content can be varied in a large range. The mineralised samples obtained after immersion in simulated body fluid were characterised to understand the mechanism and kinetics of Ca–P precipitation. The results confirmed that the precipitation kinetics of Ca–P was influenced by the substitution of silica.  相似文献   
22.
Suspended nanoparticles inside the nanofluids can modify the characteristics of heated surfaces and the physical properties of the base liquids, offering a great opportunity to optimize boiling heat transfer. This paper reviews the mechanisms of nanoparticle deposition and the effects induced by deposited nanoparticles on surface roughness, force balance at the triple line, surface wettability, active nucleation site density, receding and advancing contact angles, boiling heat transfer coefficient and critical heat flux. Both enhancement and deterioration effects on boiling heat transfer coefficient and critical heat flux have been discussed. Most of the existing experimental data confirms the enhancement of critical heat flux using alumina nanofluid, however there is no consistency about its boiling heat transfer coefficient.  相似文献   
23.
《Ceramics International》2020,46(5):5649-5657
To establish the relationship between wettability and structure with the change in SAW flux composition, the contact angle measurement study was performed at 1700 K. For MgO–TiO2–SiO2 and Al2O3–MgO–SiO2 flux system the wetting behaviour was studied by evaluating the contact angle as well as surface tension properties. Sessile drop method was used to determine the wetting properties of SAW fluxes. Twenty-one SAW fluxes were designed & developed by applying mixture design approach of design of experiments. Chemical, phase and structural properties of SAW fluxes were measured using modern techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD) & Fourier Transform Infra-red spectroscopy (FTIR). As per the calculated contact angle value, different surface tension values for MgO–TiO2–SiO2 and Al2O3–MgO–SiO2 flux system was calculated using Young's & Boni's equations. Using Dupre's equation the adhesion energy for twenty-one basic fluxes was also calculated. Measured contact angle value increased with increase in the TiO2/MgO & TiO2/Al2O3 flux ratio. Lower contact angle gives higher wettability between the flux and the heating substrate. With increase of TiO2/SiO2 ratio up to 1.5 to 2.0 the calculated surface tension value is decreasing while after that it is increased with increase in TiO2/SiO2 ratio.  相似文献   
24.
《Ceramics International》2020,46(9):13114-13124
In this study, plasma electrolyte oxidation (PEO) method was employed to modify the surface of Ti–6Al–4V. Effects of different concentrations of ZrO2 nanoparticles (0, 1, 3 and 5 g/l) into a phosphate-based electrolyte on the morphology, wettability, antibacterial and corrosion behaviors of coatings were investigated. Microstructural analyses of coatings were evaluated using scanning electron microscopy with an energy dispersive spectrometer. Also, X-ray diffraction, contact angle instrument and profilometry were respectively used to perform phase analysis, wettability, and surface roughness of the coatings. The antibacterial test was conducted with spot inoculation method on four pathogenic bacteria. Polarization and impedance spectroscopy measurements were performed in Hank's solution to investigate the corrosion behavior of coatings. The results revealed that PEO coatings without nanoparticles and by increasing the concentration of the ZrO2 nanoparticles up to 3 g/l in the electrolyte led to a significant improvement in the antibacterial activities of gram-negative bacteria (P. aeruginosa and E. Coli). In the case of gram-positive bacteria, the PEO coated samples demonstrated improved antibacterial effects but addition of ZrO2 nanoparticles in the PEO coatings resulted in deterioration of antibacterial effect. The sample coated with 3 g/l ZrO2 nanoparticles showed the peak corrosion resistance compared to its counterparts.  相似文献   
25.
In this paper, three liquids flowing in five pipes with the same inner diameter of 14 mm were studied to determine the relationship between the surface wettability and flow properties in laminar flow(Re b 2000). This was motivated by oilfield observations of increased pressure drops in non-metallic pipes compared to those in metal pipes,which was contrary to expectations. A new expression for the frictional coefficient that considers the Reynolds number and contact angle θ in laminar flow for non-metallic pipes was proposed based on the experimental results of single-phase flow using dimension and regression analyses. The solutions of the anomalous phenomenon were proposed from the perspectives of the pipe diameter, contact-angle difference, and the compatibility between flexible composite pipe and JLHW105 oil according to the new formula. The surprising finding was that the surface wettability could control the frictional resistance by the critical contact angle(39.9°) obtained at the same Reynolds number. If 0° b θ≤ 39.9°, the frictional coefficient increased as the contact angle increased. In contrast, if 39.9° b θ b 180°,the frictional coefficient decreased with increasing contact angle. The influences of the pipe diameter and contactangle difference on the pressure drop difference of JLHW105 oil showed an inversely proportional relation. A series of materials and liquids were tested. The selection of pipe material for transporting a given fluid can be based on the contact angle, surface tension, and critical limit of the contact angle obtained. The research results are expected to provide some guidelines for the selection of the appropriate pipe material for a given set of fluids.  相似文献   
26.
The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane. In this work, a hydrophilic PDA-[PDDA/TiO2]+ Cl membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride) (PDDA) polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine (DA). Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+ PFO via the counterion exchange between Cl and PFO (perfluorooctanoate). The transformation between hydrophilicity and hydrophobicity is reversible. For both hydrophilic and hydrophobic membranes, the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue (MB), Congo red (CR) and Evans blue (EB), and as well metal salt aqueous solution. The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored. The results revealed that both membranes showed high nanofiltration performances for retention of dyes in (non)aqueous solution. For the hydrophilic membrane, the rejection of salts in a sequence is MgSO4 > Na2SO4 > MgCl2 > NaCl. Moreover, both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property.  相似文献   
27.
采用传统座滴法研究了低熔点合金(Bi-Sn)和高熵合金(AlCoFeNiCr和CuCoFeNiCr)之间的润湿行为及界面特征。借助扫描电子显微镜(SEM)和能谱分析(EDS)分析了Bi-Sn/AlCoFeNiCr和Bi-Sn/CuCoFeNiCr界面微观结构。结果表明:AlCoFeNiCr和CuCoFeNiCr高熵合金都是结构单一的固溶体,但Bi-Sn熔体在CuCoFeNiCr高熵合金基体上的润湿性明显地优于Bi-Sn熔体在AlCoFeNiCr高熵合金基体上的润湿性;Bi-Sn/CuCoFeNiCr界面发生剧烈的化学反应,有大量的界面反应物生成,Bi-Sn熔体中的原子Sn主要是沿着CuCoFeNiCr高熵合金中的富铜相扩散,而Bi-Sn/AlCoFeNiCr界面平直,且随着润湿温度的升高,Bi-Sn熔体中的原子向AlCoFeNiCr高熵合金基体的扩散程度加强并伴随化学反应,出现类似"皮下潜流"现象;由于CuCoFeNiCr高熵合金中富铜相的存在,为Bi-Sn在CuCoFeNiCr高熵合金基体上的铺展提供了"润湿通道"。  相似文献   
28.
To improve the wetting ability between ceramic and metal, titanium and copper coatings on alumina ceramics were prepared by infiltration of molten salt and electroless plating, respectively. A Ti/Cu bi-layer was also obtained by combining the two methods. The preparation process was optimized. The phase composition of the coatings was analyzed by X-ray diffraction (XRD). And the wettability of the titanium coating was investigated. The results showed that the copper droplet was easily spread on the surface of titanium coated alumina. The titanium coated alumina was well composited with high chromium white cast iron and the interface between ceramic and metal was well combined.  相似文献   
29.
An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the effect of temperature, salinity, permeability and connate water were investigated by comparing the produced hydrocarbon curves. Contact angle measurements were taken to confirm the alteration of surface wettability of porous media. Oil recovery was enhanced by increasing the dilution ratio of sea water, and there existed an optimum dilution ratio at which the highest oil recovery was achieved. In addition, temperature had a very significant impact on oil recovery from carbonate rocks. Furthermore, oil recovery from a spontaneous imbibition process was directly proportional to the permeability of the core samples. The presence of connate water saturation inside the porous media facilitated oil production significantly. Also, the oil recovery from porous media was highly dependent on ion repulsion/attraction activity of the rock surface which directly impacts on the wettability conditions. Finally, the highest ion attraction percentage was measured for sodium while there was no significant change in pH for all experiments.  相似文献   
30.
The effect of Ti content on the wettability of AgCu-Ti filler on porous Si3N4 ceramic was studied by the sessile drop method. AgCu-2 wt% Ti filler alloy showed a minimum contact angle of 14.6° on porous Si3N4 ceramic during the isothermal wetting process. The mechanism of AgCu-Ti filler wetting on porous Si3N4 ceramic is clarified in this paper. Porous Si3N4 ceramic was brazed to TiAl alloy using AgCu-xTi (x = 0, 2 wt%, 4 wt%, 6 wt%, 8 wt%) filler alloy at 880 °C for 10 min. The effect of Ti content on the interfacial microstructure and mechanical properties of porous-Si3N4/AgCu-xTi/TiAl joints are studied. The typical interfacial microstructure of p-Si3N4/AgCu-Ti/TiAl joint is p-Si3N4/penetration layer (Ag(s,s)+Si3N4+TiN+Ti5Si3)/Ag(s,s)+Cu(s,s)+TiCu/AlCu2Ti/TiAl. The maximum shearing strength of the brazed joint was 14.17 MPa and fracture that occurred during the shearing test propagated in the porous Si3N4 ceramic substrate for the formation of the penetration layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号