首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91620篇
  免费   9507篇
  国内免费   3383篇
电工技术   1589篇
技术理论   1篇
综合类   4335篇
化学工业   36100篇
金属工艺   11372篇
机械仪表   1885篇
建筑科学   3169篇
矿业工程   1772篇
能源动力   1798篇
轻工业   11317篇
水利工程   597篇
石油天然气   2261篇
武器工业   432篇
无线电   3245篇
一般工业技术   19141篇
冶金工业   3778篇
原子能技术   430篇
自动化技术   1288篇
  2024年   533篇
  2023年   1986篇
  2022年   2963篇
  2021年   3878篇
  2020年   3512篇
  2019年   2999篇
  2018年   3339篇
  2017年   3808篇
  2016年   3806篇
  2015年   3974篇
  2014年   4930篇
  2013年   6226篇
  2012年   5913篇
  2011年   7189篇
  2010年   4991篇
  2009年   5450篇
  2008年   4420篇
  2007年   5213篇
  2006年   4897篇
  2005年   4002篇
  2004年   3778篇
  2003年   3155篇
  2002年   2633篇
  2001年   1884篇
  2000年   1673篇
  1999年   1323篇
  1998年   1126篇
  1997年   976篇
  1996年   711篇
  1995年   605篇
  1994年   463篇
  1993年   341篇
  1992年   342篇
  1991年   258篇
  1990年   302篇
  1989年   269篇
  1988年   110篇
  1987年   75篇
  1986年   74篇
  1985年   79篇
  1984年   75篇
  1983年   44篇
  1982年   62篇
  1981年   9篇
  1980年   39篇
  1979年   9篇
  1978年   8篇
  1975年   8篇
  1974年   11篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
This study investigated the use of recycled tire-derived aggregate (TDA) mixed with kaolin as a method of increasing the ultimate bearing capacity ( UBC) of a strip footing. Thirteen 1g physical modeling tests were prepared in a rigid box of 0.6 m × 0.9 m in plan and 0.6 m in height. During sample preparation, 0%, 20%, 40%, or 60% (by weight) of powdery, shredded, small-sized granular (G 1–4 mm) or large-sized granular (G 5–8 mm) TDA was mixed with the kaolin. A strip footing was then placed on the stabilized kaolin and was caused to fail under stress-controlled conditions to determine the UBC. A rigorous 3D finite element analysis was developed in Optum G-3 to determine the UBC values based on the experimental test results. The experimental results showed that, except for the 20% powdery TDA, the TDA showed an increase in the UBC of the strip footing. When kaolin mixed with 20% G (5–8 mm), the UBC showed a threefold increase over that for the unreinforced case. The test with 20% G (1–4 mm) recorded the highest subgrade modulus. It was observed that the UBC calculated using finite element modeling overestimated the experimental UBC by an average of 9%.  相似文献   
102.
《Ceramics International》2021,47(23):33259-33268
The demand for high-performance grinding wheels is gradually increasing due to rapid industrial development. Vitrified bond diamond composite is a versatile material for grinding wheels used in the backside grinding step of Si wafer production. However, the properties of the vitrified bond diamond composite are controlled by the characteristics of the diamond particles, the vitrified bond, and pores and are very complicated. The main objective of this study was to investigate the effects of SiO2–Na2O–B2O3–Al2O3–Li2O–K2O–CaO–MgO–ZrO2–TiO2–Bi2O3 glass powder on the sintering, microstructure, and mechanical properties of the vitrified bond diamond composite. The elemental distributions of the composite were analyzed using electron probe micro-analysis (EPMA) to clarify the diffusion behaviors of various elements during sintering.The results showed that the relative density and transverse rupture strength of the composite sintered at 620 °C were 91.7% and 126 MPa, respectively. After sintering at 680 °C, the glass powder used in this study exhibited a superior forming ability without an additional pore foaming agent. The relative density and transverse rupture strength of the composite decreased to 48.2% and 49 MPa, respectively. Moreover, the low sintering temperature of this glass powder protected the diamond particles from graphitization during sintering, as determined by X-ray diffraction and Raman spectrum. Furthermore, the EPMA results indicate that Na diffused and segregated at the interface between the diamond particles and vitrified bond, contributing to the improved bonding. The diamond particles can remain effectively bonded by the vitrified bond even after fracture.  相似文献   
103.
《Ceramics International》2022,48(5):6208-6217
Three different coatings, namely TiAlN, TiAlN (external)/NbN (internal) and NbN (external)/TiAlN (internal), were deposited on cemented carbides by arc ion plating. The comparative investigation conducted in this study elucidates the effect of the NbN layer and coating systems on the growth, mechanical properties, and tribological performance of the coatings. The results showed that the surface of the TiAlN and TiAlN/NbN coatings was smoother when TiAlN served as the external layer. The NbN/TiAlN coating, wherein NbN formed the external layer, had a much rougher but more symmetrical surface. With the introduction of the NbN layer, the increased micro stress induced a lower adhesion strength in the TiAlN/NbN and NbN/TiAlN coatings. The TiAlN/NbN and NbN/TiAlN coatings exhibited higher hardness and hardness/effective elastic modulus (H/E*). During the friction test, when the temperature was elevated to 700 °C, the tribological performance of the monolayer TiAlN coating was the lowest because of the TiO2-induced breakage of the dense tribo-oxide film. The NbN layer participated in the formation of a NbOx film at elevated temperatures, which was responsible for the high tribological performance of the two bilayer coatings. When the NbN layer was on the outermost layer and in direct contact with the elevated temperature atmosphere, the NbN/TiAlN coating generated a tribo-oxide film with high integrity, and its coefficient of friction decreased by 27% of that at room temperature. Therefore, the NbN/TiAlN coating exhibited the highest wear resistance at 700 °C.  相似文献   
104.
The Fe−Ni−TiO2 nanocomposite coatings were electrodeposited by pulse frequency variation. The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies. By increasing the pulse frequency from 10 to 500 Hz, the iron and TiO2 nanoparticles contentswere increased in expense of nickel content. XRD patterns showed that by increasing the frequency to 500 Hz, an enhancement ofBCC phase was observed and the grain size of deposits was reduced to 35 nm. The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO2 nanoparticles into the Fe−Ni matrix (5.13 wt.%). Moreover, the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.  相似文献   
105.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   
106.
Linear-viscoelastic characteristics and performance are evaluated throughout the blending process of polyethylene and polypropylene with bitumen. Results indicate that type, form and percentage of polyolefin play a significant role in the time evolution of the composite's mechanical response. Toluene extraction of modified bitumen revealed, for the first time, the formation of a sponge-like polymer network. Visual inspection and Fourier transform infrared analysis of the polyolefins recovered after extraction indicates higher affinity of the polyethylene with bitumen in agreement with the rheological test results. The use of polypropylene is discouraged if rutting performance is a concern, and polyethylene in both pellets and powder form at 4%, and after 210 min of blending produces a modified bitumen with acceptable performance.  相似文献   
107.
A new strategy for the selective coating of tin sulfide (SnS) on the surface of moth‐eye patterned (MEP) conducting polymer film is studied by considering the optical properties of the antireflective moth‐eye pattern and flexibility of polymer films. The semiconductor SnS is selectively coated on the surface of MEP microdomes of poly(3,4‐ethylenedioxythiophene) poly(styrene‐sulfonate) (PEDOT:PSS) film. The SnS coated MEP film is obtained by using pore selectively SnS thin layer functionalized polystyrene honeycomb‐patterned porous (HCP) film as a template. Aqueous PEDOT:PSS solution is poured on the SnS functionalized HCP films and detached for the fabrication of SnS coated MEP films. The films show a satisfactory photo‐responsive property under solar stimulated light illumination due to the antireflective MEP structure of PEDOT film and homogenous SnS coating on the surface of the conducting polymer.  相似文献   
108.
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the “canonical” one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.  相似文献   
109.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
110.
Environmental concerns continue to pose the challenge to replace petroleum-based products with renewable ones completely or at least partially while maintaining comparable properties. Herein, rigid polyurethane (PU) foams were prepared using soy-based polyol for structural and thermal insulation applications. Cell size, density, thermal resistivity, and compression force deflection (CFD) values were evaluated and compared with that of petroleum-based PU foam Baydur 683. The roles of different additives, that is, catalyst, blowing agent, surfactants, and different functionalities of polyol on the properties of fabricated foam were also investigated. For this study, dibutyltin dilaurate was employed as catalyst and water as environment friendly blowing agent. Their competitive effect on density and cell size of the PU foams were evaluated. Five different silicone-based surfactants were employed to study the effect of surface tension on cell size of foam. It was also found that 5 g of surfactant per 100 g of polyol produced a foam with minimum surface tension and highest thermal resistivity (R value: 26.11 m2·K/W). However, CFD values were compromised for higher surfactant loading. Additionally, blending of 5 g of higher functionality soy-based polyol improved the CFD values to 328.19 kPa, which was comparable to that of petroleum-based foam Baydur 683.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号