首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91620篇
  免费   9507篇
  国内免费   3383篇
电工技术   1589篇
技术理论   1篇
综合类   4335篇
化学工业   36100篇
金属工艺   11372篇
机械仪表   1885篇
建筑科学   3169篇
矿业工程   1772篇
能源动力   1798篇
轻工业   11317篇
水利工程   597篇
石油天然气   2261篇
武器工业   432篇
无线电   3245篇
一般工业技术   19141篇
冶金工业   3778篇
原子能技术   430篇
自动化技术   1288篇
  2024年   533篇
  2023年   1986篇
  2022年   2963篇
  2021年   3878篇
  2020年   3512篇
  2019年   2999篇
  2018年   3339篇
  2017年   3808篇
  2016年   3806篇
  2015年   3974篇
  2014年   4930篇
  2013年   6226篇
  2012年   5913篇
  2011年   7189篇
  2010年   4991篇
  2009年   5450篇
  2008年   4420篇
  2007年   5213篇
  2006年   4897篇
  2005年   4002篇
  2004年   3778篇
  2003年   3155篇
  2002年   2633篇
  2001年   1884篇
  2000年   1673篇
  1999年   1323篇
  1998年   1126篇
  1997年   976篇
  1996年   711篇
  1995年   605篇
  1994年   463篇
  1993年   341篇
  1992年   342篇
  1991年   258篇
  1990年   302篇
  1989年   269篇
  1988年   110篇
  1987年   75篇
  1986年   74篇
  1985年   79篇
  1984年   75篇
  1983年   44篇
  1982年   62篇
  1981年   9篇
  1980年   39篇
  1979年   9篇
  1978年   8篇
  1975年   8篇
  1974年   11篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
72.
《Ceramics International》2015,41(7):8768-8772
Neodymium doped bismuth ferrite (BiFeO3, BFO) nanoparticles were successfully synthesized by a facile sol–gel route. The influence of annealing temperature, time, Bi content and solvent on the crystal structure of BFO was studied. Results indicated that the optimum processing condition of BFO products was 550–600 °C/1.5 h with excess 3–6% Bi and ethylene glycol as solvent. On the other hand, Nd3+ ion was introduced into the BFO system and the effect of Nd3+ concentration on the structure, magnetic and dielectric properties of BFO were investigated. It was found that the magnetization of BFO was enhanced significantly with Nd3+ substitution, being attributed to the suppression of the spiral cycloidal magnetic structure led by the crystal structure transition. Furthermore, with increasing Nd3+ content, the dielectric constant was found to decrease while the dielectric loss was enhanced, which was mainly due to the hoping conduction mechanism with the reduction of oxygen vacancies.  相似文献   
73.
Incorporating high level of potato flour into wheat flour enhances nutritional values of bread but induces a series of problems that lead to the decline of the bread quality. To overcome the barrier, wheat gluten and carboxymethylcellulose (CMC) were added into potato–wheat composite flour to improve dough machinability and bread quality. The rheological properties, thermo-mechanical properties and microstructures of dough were investigated. The results showed that the interaction between gluten and CMC mitigated the discontinuity of gluten matrix and gluten protein aggregation caused by the addition of potato flour, which yielded a more branched and compact gluten network. The compact three-dimensional viscoelastic structure induced improvements of gas retention capacity and dough stability, making it mimic the machinability properties of wheat flour dough. Bread qualities were apparently improved with the combined use of 4% gluten and 6% CMC, of which specific volume increased by 42.86%, and simultaneously, hardness reduced by 75.93%.  相似文献   
74.
The site preferences of co-alloying elements (Mo–Ta, Mo–Re, Mo–Cr) in Ni3Al are studied using first-principles calculations, and the effects of these alloying elements on the elastic properties of Ni3Al are evaluated by elastic property calculations. The results show that the Mo–Ta, Mo–Re and Mo–Cr atom pairs all prefer Al–Al sites and the spatial neighbor relation of substitution sites almost has no influence on the site preference results. Furthermore, the Young's modulus of Ni3Al increases much higher by substituting Al–Al sites with co-alloying atoms, among which Mo–Re has the best strengthening effect. The enhanced chemical bondings between alloying atoms and their neighbor host atoms are considered to be the main strengthening mechanism of the alloying elements in Ni3Al.  相似文献   
75.
A study using three different pairs of electrochromic polymers (ECPs) synthesized onto plaques by means of a modified vapor phase polymerization (VPP) technique is presented. Restriction of the respective polymerization times, allowed both faster and slower polymerizing monomers to be controlled, and produced blended plaques with visually diffuse interfaces. The ECPs within the blended plaques retain their individual electrochromic behavior and when encapsulated into an electrochromic device, show outstanding optical switching performance with little degradation evident over 10,000 cycles, coupled with a switching time of the order of 1 second. Blends also allow multiple diffuse color changes within an electrochromic device, due to the difference in oxidation potentials of the individual ECPs, making them candidates for adaptive camouflage use. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42158.  相似文献   
76.
Core–shell structures have been proposed to improve the electrical properties of negative-temperature coefficient (NTC) thermistor ceramics. In this work, Al2O3-modified Co1.5Mn1.2Ni0.3O4 NTC thermistor ceramics with adjustable electrical properties were prepared through citrate-chelation followed by conventional sintering. Co1.5Mn1.2Ni0.3O4 powder was coated with a thin Al2O3 shell layer to form a core–shell structure. Resistivity (ρ) increased rapidly with increasing thickness of the Al2O3 layer, and the thermal constant (B) varied moderately between 3706 and 3846 K. In particular, Co1.5Mn1.2Ni0.3O4@Al2O3 ceramic with 0.08 wt% Al2O3 showed the increase of ρ double, and the change in its B was less than 140 K. The Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics showed high stability, and their grain size was relatively uniform due to the protection offered by the shell. The aging coefficient of the ceramic was less than 0.2% after aging for 500 hours at 125°C. Taken together, the results indicate that as-prepared Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics with a core–shell structure may be promising candidates for application as wide-temperature NTC thermistor ceramics.  相似文献   
77.
Although many colloidal assembling systems have been reported, most systems suffer from severe aggregation under high solid concentrations, which can often be observed in typical hetero-aggregation system. In this study, we created a hetero-assembly system using concentrated (~50 vol%) suspensions by mixing large SiO2 particles modified with polyacrylic acid partially complexed with oleylamine (PAA-OAm) and small SiO2 particles modified with polyethyleneimine partially complexed with oleic acid (PEI-OA) in a non-aqueous solvent. We demonstrated that hetero-assembly is driven by the interactions between the uncomplexed carboxyl/amine groups of the PAA/PEI present on the particles, while severe aggregation is simultaneously prevented by the steric repulsions of the aliphatic oleyl chains. Comparison of the cross sections of the in-situ solidified hetero-assembled suspensions with those of ideally assembled structures which were reproduced by a simulation considering the statistical distribution of particles strongly supported successful particle assembling via the proposed approach. The results revealed that the OA content in the PEI-OA complex was the dominant factor that controlled the dispersion and assembling state of the binary particles. The significance of this study is that our findings will provide a class of colloidal dispersion state which binary particles were assembled in a high solid content suspension without forming strong aggregates.  相似文献   
78.
In the present work, a rheological study of liquid soaps prepared from different mixture of surfactants as a function of surfactant type and concentration was performed. The curves of shear stress vs. shear rate and viscosity vs. shear rate were recorded at constant temperature, 294 ± 0.1 K. The surface activity properties were also studied. The results of the study showed that values of surface tension, γ, were in the range 31–40 mN m−1 and the critical micelle concentration (CMC), was of the order 10−4 mol L−1. The calculated maximum surface excess, Γmax, varied from 2.40 to 3.66 μmol m−2, while minimum area per molecule, Amin, varied from 41.1 (for amphoterics) to 81.4 Å2 (for nonionic surfactants). The standard free energy of micellization, −29.8 and −29.3 kJ mol−1 for anionic and amphoteric surfactants, respectively, were while values for nonionic surfactants varied between −31.8 and − 30.3 kJ mol−1. The free energy of adsorption, was the lowest for amphoteric surfactants (−37.9 kJ mol−1), followed by anionics (−40.4 kJ mol−1) and nonionics (−43.34 to −46.84 kJ mol−1), indicating that micellization process is spontaneous in the examined medium. The synthetized liquid soaps show pseudoplastic behavior and they achieved pipe flow. The results of this research indicate that flow behavior was affected significantly by the ionic charge of the surfactant and the ionic strength of the formulation, suggesting that the flow behavior could be changed by manipulating the choice of the surfactant and salinity. The pH value of all liquid soaps examined were weakly acidic, in the range of 5.0–6.4.  相似文献   
79.
The Er3+ doped oxyfluorogermanate glasses, with a composition containing Na element, were synthesized by the conventional melting–quenching technique. When Na element was introduced into the composition of oxyfluorogermanate glass, the crystals behavior was investigated in details. Depending on the annealing procedure supplied, thermal annealing of precursor glasses in the system GeO2/BaF2/AlF3/Na2O/NaF/ZnO/GdF3/ErF3 led to the precipitation of different crystal phase nanocrystals. It was confirmed the nanocrystals in GC600 is orthorhombic NaBaAlF6 which led to enhance obviously in the UC luminescence of Er3+. However, the nanocrystals in G585 led to decrease in the UC luminescence, which indicated few Er ions enter into the lattice of this nanocrystal phase. The reason of the decrease in UC emission intensity of GC585 was analyzed.  相似文献   
80.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号