首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26638篇
  免费   2965篇
  国内免费   1627篇
电工技术   1743篇
综合类   1768篇
化学工业   9547篇
金属工艺   1759篇
机械仪表   1029篇
建筑科学   332篇
矿业工程   411篇
能源动力   320篇
轻工业   2907篇
水利工程   40篇
石油天然气   371篇
武器工业   246篇
无线电   4358篇
一般工业技术   4203篇
冶金工业   994篇
原子能技术   354篇
自动化技术   848篇
  2024年   140篇
  2023年   622篇
  2022年   772篇
  2021年   897篇
  2020年   1014篇
  2019年   953篇
  2018年   862篇
  2017年   1027篇
  2016年   958篇
  2015年   923篇
  2014年   1295篇
  2013年   1443篇
  2012年   1861篇
  2011年   1915篇
  2010年   1365篇
  2009年   1519篇
  2008年   1319篇
  2007年   1855篇
  2006年   1720篇
  2005年   1382篇
  2004年   1261篇
  2003年   1087篇
  2002年   839篇
  2001年   758篇
  2000年   647篇
  1999年   526篇
  1998年   445篇
  1997年   333篇
  1996年   324篇
  1995年   257篇
  1994年   225篇
  1993年   154篇
  1992年   142篇
  1991年   115篇
  1990年   63篇
  1989年   60篇
  1988年   33篇
  1987年   17篇
  1986年   19篇
  1985年   18篇
  1984年   21篇
  1983年   12篇
  1982年   13篇
  1981年   10篇
  1980年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
To investigate the effects of SiC on microstructure, hardness, and fracture toughness, 0, 10, 20, and 30 vol% SiC were added to HfB2 and sintered by SPS. Upon adding SiC to 30 vol%, relative density increased about 4%; but HfB2 grain growth had a minimum at 20 vol% SiC. This may be due to grain boundary silicate glass, responsible for surface oxide wash out, enriched in SiO2 with higher fraction of SiC. By SiO2 enrichment, the glass viscosity increased and higher HfO2 remained unsolved which subsequently lead to higher grain growth. Hardness has increased from about 13 to 15 GPa by SiC introduction with no sensible variation with SiC increase. Residual stress measurements by Rietveld method indicated high levels of tensile residual stresses in the HfB2 Matrix. Despite the peak residual stress value at 20 vol% SiC, fracture toughness of this sample was the highest (6.43 MPa m0.5) which implied that fracture toughness is mainly a grain size function. Tracking crack trajectory showed a mainly trans-granular fracture, but grain boundaries imposed a partial deflection on the crack pathway. SiC had a higher percentage in fracture surface images than the cross-section which implied a weak crack deflection.  相似文献   
32.
The Ca(1+2y)Sn(1-x)Si(1+y)O(5-2x+4y) low-permittivity microwave dielectric ceramics were prepared through solid-state reaction at 1350–1450 °C for 5 h. The relations between microwave dielectric properties and phase compositions for non-stoichiometric Ca(1+2y)Sn(1-x)Si(1+y)O(5-2x+4y) ceramics have been investigated. A single CaSnSiO5 phase with abnormally positive temperature coefficient of resonant frequency (τf = + 62.5 ppm/°C) was synthesised at 1450 °C. This composition was an effective τf compensator of CaSiO3 and Ca3SnSi2O9 phases with typically negative τf value. The CaSiO3 second phase was related to the Sn deficiency in the CaSn(1-x)SiO(5-2x) (0 < x < 1.0) composition, whereas the Ca3SnSi2O9 second phase was obtained by controlling the Ca:Sn:Si ratios on the basis of the Ca(1+2y)SnSi(1+y)O(5+4y) (0 < y < 1.0) composition. A promising low-permittivity millimetre-wave ceramic with most excellent microwave dielectric properties (εr = 10.2, Q×f = 81,000 GHz and τf = −4.8 ppm/°C) was produced from the Ca(1+2y)SnSi(1+y)O(5+4y) (y = 0.4) ceramic.  相似文献   
33.
In this paper, polyborosilazane precursor was synthesied from HMDZ, HSiCl3, BCl3 and CH3NH2 using a multistep method. By controlling the storage conditions, parts of the polyborosilazane fibers were hydrolyzed. FT-IR, NMR, XRD, TEM and monofilament tensile strength test were employed to study the effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers. FT-IR and NMR results indicate that Si-N group in PBSZ reacts with H2O to form Si-O-Si group. After pyrolysis reaction at 1400℃, Si-O-Si group will finally transformed into highly ordered cristobalite and β-quartz, resulting in formation of the wrinkled surface of the obtained SiBN ceramic fiber. The strip-like defects on fiber surface, according to monofilament tensile strength test, had a significant effect on mechanical property of the obtained SiBN ceramic fiber and caused no increase in fiber tensile strength of hydrolytic polyborosilazane fiber before and after pyrolytic process.  相似文献   
34.
In this work, ultra-low loss Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics were successfully prepared via the conventional solid-state method. X-ray photoelectron spectroscopy (XPS), thermally stimulated depolarization current (TSDC) and bond energy were used to determine the distinction between intrinsic and extrinsic dielectric loss in (Mg1/3Nb2/3)4+ ions substituted ceramics. The addition of (Mg1/3Nb2/3)4+ ions enhances the bond energy in unit cell without changing the crystal structure of Li2MgTiO4, which results in high Q·f value as an intrinsic factor. The extrinsic factors such as porosity and grain size influence the dielectric loss at lower sintering temperature, while the oxygen vacancies play dominant role when the ceramics densified at 1400?°C. The Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr =?16.19, Q·f?=?160,000?GHz and τf =??3.14?ppm/°C. In addition, a certain amount of LiF can effectively lower the sintering temperature of the matrix, and the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4-3?wt% LiF ceramics sintered at 1100?°C possess balanced properties with εr?=?16.32, Q·f?=?145,384?GHz and τf =??16.33?ppm/°C.  相似文献   
35.
36.
In this study, yttrium iron garnet co-doped with Zn and Zr atoms with a chemical formula Y3ZnxZrxFe(5−2x)O12 (x = 0.0-0.3) has been successfully prepared by the solid-state reaction method. The effects of doping concentration on the microstructure, crystal structure, magnetic properties, and dielectric properties of Y3ZnxZrxFe(5−2x)O12 were investigated. The microstructure analysis indicates that co-doping of YIG with Zn and Zr can effectively reduce the grain size of the ceramic. The crystal structure results reveal that the doping concentration of Zn–Zr has substantial influence on the lattice parameters of YIG, such as, increases the lattice constant, crystal cell size, and interplanar spacing. However, the second phase of ZrO2 appears once ≥ 0.15. Additionally, the dielectric properties of YIG ferrite can be regulated using this Zn–Zr co-doping method. Zn–Zr co-doping can improve the dielectric stability and reduce the dielectric loss at high temperature. The magnetization measurement shows that the saturation magnetization is stabilized at x < 0.15, and the magnetic loss is decreased with the increase in the doping concentration. Overall, the findings show that the ceramic with x = 0.1 exhibits better properties included high saturation magnetization (24.607 emu/g), low magnetic loss (0.0025 @ 1 MHz), and relatively low dielectric loss (496 @ 400°C).  相似文献   
37.
This study was addressed to the influence of an electric field strength applied at fabrication process and matrix properties, such as the dielectric constant and the Young's modulus, on “pseudo‐1‐3 piezoelectric ceramic/polymer composite” in order to further enhance the piezoelectricity of that. The pseudo‐1‐3 piezoelectric ceramic/polymer composite consists of linearly ordered piezoelectric ceramic particles in polymer material. Silicone gel, silicone rubber, urethane rubber, and poly‐methyl‐methacrylate, which exhibit different dielectric constants and Young's modulus, were used as matrices to evaluate the matrix influence. The piezoelectricity of the pseudo‐1‐3 piezoelectric ceramic/polymer composite was evaluated using the piezoelectric strain constant d33. The d33 is one of the indices of the piezoelectric properties for piezoelectric materials. As a result, it was confirmed that d33 of the pseudo‐1‐3 piezoelectric ceramic/polymer composite increased with the increase of the electric filed strength applied at fabrication process, though, it reached a constant value at a certain strength value. Further it was confirmed that dielectric constant of the matrix had a small influence on d33 of the pseudo‐1‐3 piezoelectric ceramic/polymer composite, however, in case of matrix of lower Young's modulus, d33 was increase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41817.  相似文献   
38.
《Ceramics International》2020,46(7):8839-8844
In this work, B4C-covered zirconia-toughened alumina (ZTA) particles are prepared and oxidised at 1050 °C for different times (0, 2, 4, and 8 h) in air. The X-ray diffraction and electron probe micro-analysis results show that the covering layer is mainly composed of oxide B2O3 intermetallics, residual B4C particles, and Al18B4O33 whiskers. The scanning electron microscopy results show that the growth of Al18B4O33 whiskers on the ZTA particles enhances with increasing heat preservation time; the optimum holding time is determined to be 8 h Al2O3 in the ZTA particles diffuse into the covering layer and combine with B2O3 to form Al18B4O33 whiskers; the Al18B4O33 whiskers grow via the liquid-solid mechanism.  相似文献   
39.
Porous polyimide (PI) films with low dielectric constants and excellent thermal properties have been a pressing demand for the next generation of high-performance, miniature, and ultrathin microelectronic devices. A series of novel porous PI films containing fluorenyl-adamantane groups were prepared successfully via thermolysis of poly(ethylene glycol) (PEG) added in the PI matrix. The cross-sectional morphologies of porous PI films showed closed pores with diameters ranging from 135 to 158 nm, which were uniform and regular in shape without interconnectivity. These porous PI films exhibited excellent thermal properties with a glass-transition temperature at 376 °C whereas the 5% weight loss temperature in air excess of 405 °C due to enhanced rigidity afforded by fluorenyl-adamantane groups. Accompanied by thermolysis content of PEG increasing from 0 to 20 wt %, the density of porous PI films decreased, and the corresponding porosity grew significantly from 0 to 11.48%. Depending on porosity, the dielectric constant and dielectric loss of porous PI films significantly declined from 2.89 to 2.37 and from 0.050 to 0.021, respectively. These excellent properties benefit the as-prepared porous PI films for application as interlayer dielectrics, integrated circuit chips, or multichip modules in microelectronic fields. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47313.  相似文献   
40.
钛酸锶钡(BST)薄膜作为一种高K介质材料在微电子和微机电系统等领域具有广阔的应用前景,人们已对BST薄膜的制备工艺技术和介电性能进行了大量的研究。BST纳米薄膜的制备工艺直接影响和决定着薄膜的介电性能(介电常数、漏电流密度、介电强度等)。对RF磁控反应溅射制备BST纳米薄膜的工艺技术进行了综述。从溅射靶的制备、溅射工艺参数的优化、热处理、薄膜组分的控制,及制备工艺对介电性能的影响等方面,对现有研究成果进行了较全面的总结。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号