全文获取类型
收费全文 | 5972篇 |
免费 | 1291篇 |
国内免费 | 159篇 |
专业分类
电工技术 | 895篇 |
综合类 | 161篇 |
化学工业 | 1312篇 |
金属工艺 | 281篇 |
机械仪表 | 29篇 |
建筑科学 | 11篇 |
矿业工程 | 64篇 |
能源动力 | 935篇 |
轻工业 | 12篇 |
水利工程 | 1篇 |
石油天然气 | 6篇 |
武器工业 | 8篇 |
无线电 | 1395篇 |
一般工业技术 | 2137篇 |
冶金工业 | 129篇 |
原子能技术 | 3篇 |
自动化技术 | 43篇 |
出版年
2024年 | 59篇 |
2023年 | 759篇 |
2022年 | 207篇 |
2021年 | 494篇 |
2020年 | 588篇 |
2019年 | 508篇 |
2018年 | 440篇 |
2017年 | 413篇 |
2016年 | 347篇 |
2015年 | 283篇 |
2014年 | 289篇 |
2013年 | 223篇 |
2012年 | 185篇 |
2011年 | 442篇 |
2010年 | 308篇 |
2009年 | 250篇 |
2008年 | 250篇 |
2007年 | 299篇 |
2006年 | 210篇 |
2005年 | 174篇 |
2004年 | 160篇 |
2003年 | 108篇 |
2002年 | 124篇 |
2001年 | 56篇 |
2000年 | 38篇 |
1999年 | 65篇 |
1998年 | 30篇 |
1997年 | 31篇 |
1996年 | 31篇 |
1995年 | 18篇 |
1994年 | 10篇 |
1992年 | 4篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1954年 | 1篇 |
1951年 | 8篇 |
排序方式: 共有7422条查询结果,搜索用时 15 毫秒
31.
Chenglong Zhao Zhenpeng Yao Dong Zhou Liwei Jiang Jianlin Wang Vadim Murzin Yaxiang Lu Xuedong Bai Aln Aspuru‐Guzik Liquan Chen Yong‐Sheng Hu 《Advanced functional materials》2020,30(17)
Na‐ion batteries have experienced rapid development over the past decade and received significant attention from the academic and industrial communities. Although a large amount of effort has been made on material innovations, accessible design strategies on peculiar structural chemistry remain elusive. An approach to in situ construction of new Na‐based cathode materials by substitution in alkali sites is proposed to realize long‐term cycling stability and high‐energy density in low‐cost Na‐ion cathodes. A new compound, [K0.444(1)Na1.414(1)][Mn3/4Fe5/4](CN)6, is obtained through a rational control of K+ content from electrochemical reaction. Results demonstrate that the remaining K+ (≈0.444 mol per unit) in the host matrix can stabilize the intrinsic K‐based structure during reversible Na+ extraction/insertion process without the structural evolution to the Na‐based structure after cycles. Thereby, the as‐prepared cathode shows the remarkably enhanced structural stability with the capacity retention of >78% after 1800 cycles, and a higher average operation voltage of ≈3.65 V versus Na+/Na, directly contrasting the non‐alkali‐site‐substitution cathode materials. This provides new insights into alkali‐site‐substitution constructing advanced Na‐ion cathode materials. 相似文献
32.
The development of high energy/power density sodium‐ion batteries (SIBs) is still challenged by the high redox potential of Na/Na+ and large radius of Na+ ions, thus requiring extensive further improvement to, in particular, enhance the capacity and voltage of cathode materials. Among the various types of cathodes, the polyanion cathodes have emerged as the most pragmatic option due to their outstanding thermostability, unique inductive effect, and flexible structures. In this Review, a critical overview of the design principles and engineering strategies of polyanion cathodes that could have a pivotal role in developing high energy/power density SIBs are presented. Specifically, the engineering of polyanion cathode materials for higher voltage and specific capacity to increase energy density is discussed. The way in which morphology control, architectural design, and electrode processing have been developed to increase power density for SIBs is also analyzed. Finally, the remaining challenges and the future research direction of this field are presented. 相似文献
33.
Zhe Peng Xia Cao Peiyuan Gao Haiping Jia Xiaodi Ren Swadipta Roy Zhendong Li Yun Zhu Weiping Xie Dianying Liu Qiuyan Li Deyu Wang Wu Xu Ji‐Guang Zhang 《Advanced functional materials》2020,30(24)
To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated. 相似文献
34.
Bo Wang Edison Huixiang Ang Yang Yang Yufei Zhang Hongbo Geng Minghui Ye Cheng Chao Li 《Advanced functional materials》2020,30(28)
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry. 相似文献
35.
聚合物锂离子电池的发展对聚合物电解质提出了更高的要求,促使人们开发性能优良的干态聚合物电解质。综述了近年来干态聚合物电解质的研究进展,包括:(1)以改性聚氧化乙烯-锂盐复合体系为代表的耦合体系;(2)导电机理完全不同的解耦合体系;(3)阴离子移动受限的单离子体系。其中,解耦合体系与单离子体系的研究得到了特别的关注。 相似文献
36.
由于干态聚合物电解质目前还不能满足聚合物锂离子电池的应用要求,人们致力于开发含液体增塑剂的聚合物电解质,包括凝胶型和微孔型两类体系。本文综述了含液聚合物电解质的最新进展,重点论述了各种新体系和新方法。 相似文献
37.
A New Strategy to Effectively Suppress the Initial Capacity Fading of Iron Oxides by Reacting with LiBH4 下载免费PDF全文
Yun Cao Yaxiong Yang Zhuanghe Ren Ni Jian Mingxia Gao Yongjun Wu Min Zhu Feng Pan Yongfeng Liu Hongge Pan 《Advanced functional materials》2017,27(16)
In this work, a new facile and scalable strategy to effectively suppress the initial capacity fading of iron oxides is demonstrated by reacting with lithium borohydride (LiBH4) to form a B‐containing nanocomposite. Multielement, multiphase B‐containing iron oxide nanocomposites are successfully prepared by ball‐milling Fe2O3 with LiBH4, followed by a thermochemical reaction at 25–350 °C. The resulting products exhibit a remarkably superior electrochemical performance as anode materials for Li‐ion batteries (LIBs), including a high reversible capacity, good rate capability, and long cycling durability. When cycling is conducted at 100 mA g?1, the sample prepared from Fe2O3–0.2LiBH4 delivers an initial discharge capacity of 1387 mAh g?1. After 200 cycles, the reversible capacity remains at 1148 mAh g?1, which is significantly higher than that of pristine Fe2O3 (525 mAh g?1) and Fe3O4 (552 mAh g?1). At 2000 mA g?1, a reversible capacity as high as 660 mAh g?1 is obtained for the B‐containing nanocomposite. The remarkably improved electrochemical lithium storage performance can mainly be attributed to the enhanced surface reactivity, increased Li+ ion diffusivity, stabilized solid‐electrolyte interphase (SEI) film, and depressed particle pulverization and fracture, as measured by a series of compositional, structural, and electrochemical techniques. 相似文献
38.
Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors 下载免费PDF全文
Yan Zhang Zhiying Ding Christopher W. Foster Craig E. Banks Xiaoqing Qiu Xiaobo Ji 《Advanced functional materials》2017,27(27)
Oxygen vacancies (OVs) dominate the physical and chemical properties of metal oxides, which play crucial roles in the various fields of applications. Density functional theory calculations show the introduction of OVs in TiO2(B) gives rise to better electrical conductivity and lower energy barrier of sodiation. Here, OVs evoked blue TiO2(B) (termed as B‐TiO2(B)) nanobelts are successfully designed upon the basis of electronically coupled conductive polymers to TiO2, which is confirmed by electron paramagnetic resonance and X‐ray photoelectron spectroscopy. The superiorities of OVs with the aid of carbon encapsulation lead to higher capacity (210.5 mAh g?1 (B‐TiO2(B)) vs 102.7 mAh g?1 (W‐TiO2(B)) at 0.5 C) and remarkable long‐term cyclability (the retention of 94.4% at a high rate of 10 C after 5000 times). In situ X‐ray diffractometer analysis spectra also confirm that an enlarged interlayer spacing stimulated by OVs is beneficial to accommodate insertion and removal of sodium ions to accelerate storage kinetics and preserve its original crystal structure. The work highlights that injecting OVs into metal oxides along with carbon coating is an effective strategy for improving capacity and cyclability performances in other metal oxide based electrochemical energy systems. 相似文献
39.
In this work, a structurable gel‐polymer electrolyte (SGPE) with a controllable pore structure that is not destroyed after immersion in an electrolyte is produced via a simple nonsolvent induced phase separation (NIPS) method. This study investigates how the regulation of the nonsolvent content affects the evolving nanomorphology of the composite separators and overcomes the drawbacks of conventional separators, such as glass fiber (GF), which has been widely used in sodium ion batteries (SIBs), through the regulation of pore size and gel‐polymer position. The interfacial resistance is reduced through selective positioning of a poly(vinylidene fluoride‐co‐hexa fluoropropylene) (PVdF‐HFP) gel‐polymer with the aid of NIPS, which in turn enhances the compatibility between the electrolyte and electrode. In addition, the highly porous morphology of the GF/SGPE obtained via NIPS allows for the absorption of more liquid electrolyte. Thus, a greatly improved cell performance of the SIBs is observed when a tailored SGPE is incorporated into the GF separator through charge/discharge testing compared with the performance observed with pristine GF and conventional GF coated with PVdF‐HFP gel‐polymer. 相似文献
40.
General Synthesis of Dual Carbon‐Confined Metal Sulfides Quantum Dots Toward High‐Performance Anodes for Sodium‐Ion Batteries 下载免费PDF全文
Ziliang Chen Renbing Wu Miao Liu Hao Wang Hongbin Xu Yanhui Guo Yun Song Fang Fang Xuebin Yu Dalin Sun 《Advanced functional materials》2017,27(38)
Sponge‐like composites assembled by cobalt sulfides quantum dots (Co9S8 QD), mesoporous hollow carbon polyhedral (HCP) matrix, and a reduced graphene oxide (rGO) wrapping sheets are synthesized by a simultaneous thermal reduction, carbonization, and sulfidation of zeolitic imidazolate frameworks@GO precursors. Specifically, Co9S8 QD with size less than 4 nm are homogenously embedded within HCP matrix, which is encapsulated in macroporous rGO, thereby leading to the double carbon‐confined hierarchical composites with strong coupling effect. Experimental data combined with density functional theory calculations reveal that the presence of coupled rGO not only prevents the aggregation and excessive growth of particles, but also expands the lattice parameters of Co9S8 crystals, enhancing the reactivity for sodium storage. Benefiting from the hierarchical porosity, conductive network, structural integrity, and a synergistic effect of the components, the sponge‐like composites used as binder‐free anodes manifest outstanding sodium‐storage performance in terms of excellent stable capacity (628 mAh g?1 after 500 cycles at 300 mA g?1) and exceptional rate capability (529, 448, and 330 mAh g?1 at 1600, 3200, and 6400 mA g?1). More importantly, the synthetic method is very versatile and can be easily extended to fabricate other transition‐metal‐sulfides‐based sponge‐like composites with excellent electrochemical performances. 相似文献