首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80587篇
  免费   6319篇
  国内免费   8511篇
电工技术   5219篇
技术理论   69篇
综合类   7791篇
化学工业   8392篇
金属工艺   1236篇
机械仪表   3881篇
建筑科学   16805篇
矿业工程   1925篇
能源动力   2583篇
轻工业   1193篇
水利工程   2200篇
石油天然气   1259篇
武器工业   893篇
无线电   4587篇
一般工业技术   7136篇
冶金工业   1959篇
原子能技术   288篇
自动化技术   28001篇
  2024年   344篇
  2023年   1309篇
  2022年   1372篇
  2021年   1967篇
  2020年   2318篇
  2019年   2055篇
  2018年   1937篇
  2017年   2501篇
  2016年   2853篇
  2015年   2778篇
  2014年   6037篇
  2013年   6051篇
  2012年   4929篇
  2011年   5626篇
  2010年   4457篇
  2009年   5048篇
  2008年   5001篇
  2007年   5573篇
  2006年   4947篇
  2005年   4473篇
  2004年   3851篇
  2003年   3167篇
  2002年   2546篇
  2001年   2000篇
  2000年   1823篇
  1999年   1553篇
  1998年   1255篇
  1997年   1097篇
  1996年   971篇
  1995年   823篇
  1994年   708篇
  1993年   640篇
  1992年   505篇
  1991年   431篇
  1990年   338篇
  1989年   267篇
  1988年   225篇
  1987年   193篇
  1986年   152篇
  1985年   199篇
  1984年   213篇
  1983年   183篇
  1982年   160篇
  1981年   104篇
  1980年   82篇
  1979年   93篇
  1978年   62篇
  1977年   69篇
  1976年   19篇
  1975年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system.  相似文献   
42.
This paper presents a control design for the one‐phase Stefan problem under actuator delay via a backstepping method. The Stefan problem represents a liquid‐solid phase change phenomenon which describes the time evolution of a material's temperature profile and the interface position. The actuator delay is modeled by a first‐order hyperbolic partial differential equation (PDE), resulting in a cascaded transport‐diffusion PDE system defined on a time‐varying spatial domain described by an ordinary differential equation (ODE). Two nonlinear backstepping transformations are utilized for the control design. The setpoint restriction is given to guarantee a physical constraint on the proposed controller for the melting process. This constraint ensures the exponential convergence of the moving interface to a setpoint and the exponential stability of the temperature equilibrium profile and the delayed controller in the norm. Furthermore, robustness analysis with respect to the delay mismatch between the plant and the controller is studied, which provides analogous results to the exact compensation by restricting the control gain.  相似文献   
43.
This paper is concerned with the problem of joint input and state estimation for linear stochastic systems with direct feedthrough. Based on the fact that each unknown input between any two time steps is always bounded, a novel improved algorithm is proposed. Compared with existing results, this algorithm can effectively enhance estimation accuracy. Moreover, the stability of the algorithm is also discussed. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed approach.  相似文献   
44.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
45.
This paper presents an overview and examples of material design and development using (1) classical thermodynamics; (2) CALPHAD (calculation of phase diagrams) modeling; and (3) Integrated Computational Materials Engineering (ICME) approaches. Although the examples are given in lightweight aluminum and magnesium alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. The examples in this paper have demonstrated the effectiveness and limitations of classical thermodynamics in solving specific problems (such as nucleation during solidification and solid-state precipitation in aluminum alloys). Computational thermodynamics and CALPHAD modeling, when combined with critical experimental validation, have been used to guide the selection and design of new magnesium alloys for elevated-temperature applications. The future of material design and development will be based on a holistic ICME approach. However, key challenges exist in many aspects of ICME framework, such as the lack of diffusion/mobility databases for many materials systems, limitation of current microstructural modeling capability and integration tools for simulation codes of different length scales.  相似文献   
46.
Artificial bee colony (ABC) algorithm has several characteristics that make it more attractive than other bio-inspired methods. Particularly, it is simple, it uses fewer control parameters and its convergence is independent of the initial conditions. In this paper, a novel artificial bee colony based maximum power point tracking algorithm (MPPT) is proposed. The developed algorithm, does not allow only overcoming the common drawback of the conventional MPPT methods, but it gives a simple and a robust MPPT scheme. A co-simulation methodology, combining Matlab/Simulink™ and Cadence/Pspice™, is used to verify the effectiveness of the proposed method and compare its performance, under dynamic weather conditions, with that of the Particle Swarm Optimization (PSO) based MPPT algorithm. Moreover, a laboratory setup has been realized and used to experimentally validate the proposed ABC-based MPPT algorithm. Simulation and experimental results have shown the satisfactory performance of the proposed approach.  相似文献   
47.
The Externally Bonded Reinforcement (EBR) technique using Carbon Fiber-Reinforced Polymers (CFRP) has been commonly used to strengthen concrete structures in flexure. The use of prestressed CFRP material offers several advantages well-reported in the literature. Regardless of such as benefits, several studies on different topics are missing. The present work intends to contribute to the knowledge of two commercially available systems that differ on the type of anchorage: (i) the Mechanical Anchorage (MA), and (ii) the Gradient Anchorage (GA). For that purpose, an experimental program was carried out with twelve slabs monotonically tested under displacement control up to failure by using a four-point bending test configuration. The effect of type of anchorage system (MA and GA), prestrain level (0 and 0.4%), width (50 mm and 80 mm) and thickness (1.2 mm and 1.4 mm) of the CFRP laminate, and the surface preparation (grinded and sandblasted) on the flexural response were the main studied parameters. Better performance was observed for the slabs: (i) with prestressed laminates, (ii) for the MA system, and (iii) with sandblasted surface preparation.  相似文献   
48.
在课程群的教学中由于每门课程各自独立开展教学,缺乏知识的融合和衔接,导致学生运用综合知识解决问题的能力较弱。在课程群的教学中采用案例嵌入协同教学模式,将完整的工程案例嵌入到课程群各门课程的教学中,协同规划各门课程的教学任务,每门课程再围绕案例展开研究性教学。通过嵌入的工程案例衔接各门课程的知识点,帮助学生建构完整的知识体系,强化工程应用的概念;同时通过研究性教学,培养学生分析问题和解决问题的能力,两部分相结合,提高了学生运用综合知识解决复杂问题的能力。  相似文献   
49.
In 2018, Mishik Airazatovich Kazaryan received the highest award of the International Association for Alternative Energy and Ecology - Order of Antoine de Saint-Exupéry “For Improving the Quality of Life on the Planet of People” (IAAEE) on nominating the Award Committee of the Editorial Board of the International Scientific Journal for Alternative Energy and Ecology (ISJAEE). The award was given for his outstanding contribution to development of alternative energetics and ecology. M.A. Kazaryan's prominent contribution to the development of alternative energetics and ecology is based on his pioneering works in the field of development of methods for producing hydrogen as environmentally friendly safe fuel, as well as works in the field of processing organic compounds by various physical methods. As a part of joint research with colleagues from Lebedev Physical Institute of RAS (LPI), M.A. Kazaryan participated in creation of new methods for producing hydrogen from various chemical compounds. The method of conversion of liquid-phase compounds in plasma discharges under the influence of intensive ultrasonic cavitation occupies a special place. In the course of these works, it is shown that low-temperature plasma initiated in liquid-phase media in discharge between electrodes is able to effectively decompose hydrogen-containing molecules of organic compounds and form gaseous products where the part of hydrogen is more than 90%. Estimations of energy efficiency calculated taking into account hydrogen combustion heat and initial substances, as well as electricity costs, showed an efficiency level of about 60–70% in depending on the composition of the starting mixture. Another notable contribution of M.A. Kazaryan to the development of alternative energetics was the work on the optimization and justification of technological and structural parameters of energy discharge devices based on high-voltage pulse-periodic discharge for creating a reactor for plasmachemical processing of polymer wastes into hydrogen and other valuable compounds.  相似文献   
50.
This article studies the optimal filtering and control for wireless networked control systems (WNCSs). In WNCSs, packets may be lost in both control and feedback channels and user datagram protocol is usually used to improve the performance of the real-time control. Relevant literature indicates that the conventional optimal filtering for such a system cannot be applied in practice due to the complex calculation with Gaussian mixtures. This paper proposes a novel scheme to realize the optimal filtering and the linear quadratic Gaussian control for WNCSs, in which the controlled node performs a local estimation and the remote-control node performs the final estimation and control, and a synchronization of two estimators is guaranteed by a communication mechanism. An optimal filtering algorithm is developed, the stability condition of the filtering error covariance is obtained, optimal finite-horizon and infinite-horizon control are derived, and the stability of the closed-loop control system is proved. Numerical simulations show the validity and feasibility of the theoretical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号