首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2869篇
  免费   355篇
  国内免费   193篇
电工技术   44篇
综合类   125篇
化学工业   678篇
金属工艺   501篇
机械仪表   42篇
建筑科学   14篇
矿业工程   55篇
能源动力   171篇
轻工业   52篇
石油天然气   22篇
武器工业   8篇
无线电   501篇
一般工业技术   993篇
冶金工业   118篇
原子能技术   36篇
自动化技术   57篇
  2024年   10篇
  2023年   74篇
  2022年   79篇
  2021年   118篇
  2020年   120篇
  2019年   117篇
  2018年   117篇
  2017年   163篇
  2016年   150篇
  2015年   135篇
  2014年   183篇
  2013年   193篇
  2012年   198篇
  2011年   254篇
  2010年   193篇
  2009年   213篇
  2008年   157篇
  2007年   183篇
  2006年   144篇
  2005年   105篇
  2004年   77篇
  2003年   96篇
  2002年   75篇
  2001年   47篇
  2000年   52篇
  1999年   27篇
  1998年   40篇
  1997年   24篇
  1996年   18篇
  1995年   14篇
  1994年   11篇
  1993年   6篇
  1992年   8篇
  1991年   7篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1984年   2篇
  1979年   2篇
排序方式: 共有3417条查询结果,搜索用时 46 毫秒
101.
In this study, multiwall carbon nanotube (MCNT)‐supported Pd (Pd/MWCNT) catalysts are prepared by using NaBH4 reduction method. In order to maximize the oxidation and reduction of H2SO4, synthesis conditions (Pd ratio, molar ratio of NaBH4/K2PdCl4, volume of deionized water, and duration of agitation) are optimized by using response surface methodology (RSM). The optimum synthesis conditions are determined as 58.2% of Pd by weight, 154.6 molar ratio of NaBH4 to K2PdCl4, 19.48 mL of deionized water, and 186.16 min of agitation duration. The effect of electrochemical measurement conditions on the oxidation kinetics of Pd/MWCNT is also investigated by RSM. The optimum electrochemical measurement conditions are found as 10 μL of catalyst mixture, 90°C of H2SO4 solution, and 5.5 M H2SO4. The Pd/MWCNT, Pd50Ag50/MWCNT, and Pd65.6Ag33.6Cr0.80/MWCNT catalysts prepared under optimized conditions are characterized by using X‐ray diffraction, transmission electron microscopy, N2 adsorption‐desorption, and inductively coupled plasma mass spectrometry. The crystallite sizes of these catalysts are found as 4.85, 5.66, and 5.26 nm for Pd/MWCNT, Pd50Ag50/MWCNT, and Pd65.6Ag33.6Cr0.80/MWCNT catalysts, respectively. Isotherms of all these catalysts are found to be similar to Type V isotherms with H3 hysteresis loop. The average particle size of Pd50Ag50/MWCNT and Pd65.6Ag33.6Cr0.80/MWCNT catalysts are determined as 5.2 and 9.2 nm, respectively. Electrochemical performance of as‐prepared catalysts is evaluated by using cyclic voltammetry and chronoamperometry. The formic acid electrooxidation (FAEO) activities are found as 18.9, 27.8, and 51.6 mA/cm2 for Pd/MWCNT, Pd50Ag50/MWCNT, and Pd65.6Ag33.6Cr0.80/MWCNT, respectively. Pd65.6Ag33.6Cr0.80/MWCNT shows the highest activity and stability. Optimization of synthesis conditions and electrochemical measurement parameters allow us to obtain very good electrochemical activity and stability for FAEO reaction compared with anode catalysts in the literature.  相似文献   
102.
Using the magnetic sputtering technique, the SnO2/Ag/SnO2 tri-layer transparent films were fabricated on float glasses successfully. Compared with the commercial FTO (F-doped SnO2) film, the SnO2/Ag/SnO2 tri-layer films have higher visible-light transmittance and better conductivity. The total thickness of the SnO2/Ag/SnO2 films is one third of the commercial FTO film leading to the high visible-light transmittance. The high carrier concentration of the SnO2/Ag/SnO2 films contributes to the tri-layer films’ low resistivity. In addition, to further improve the performance of the SnO2/Ag/SnO2 tri-layer films, samples were annealed under different temperatures. The results illustrate that the lowest sheet resistance (5.92 Ω/sq) and the highest visible-light transmittance (87.0%) were obtained after annealing at 200 °C. Furthermore, the thermal stability of the films could be enhanced by a multi-step annealing process due to the recrystallization effect.  相似文献   
103.
《Ceramics International》2022,48(13):18238-18245
Zinc oxide nanorods, ZnO NRs, were synthesized on a clean glass and coated with graphene oxide (GO) using spray coating method to enhance the photocatalytic activity in wastewater treatment. The ZnO NRs were synthesized using the solution process synthesis that was optimized using Taguchi method. Several synthesis parameters have been optimized and studied to determine the best synthesis parameter to grow ZnO NRs for the photodegradation of organic contaminants. Field emission scanning electron microscopy (FESEM) with EDX, X-ray diffraction (XRD), Raman, ultraviolet visible near-infrared (UV-VIS-NIR), and photoluminescence (PL) spectroscopies were used to investigate the structural and optical properties of the produced nanorods. FESEM images revealed the vertical growth of ZnO NRs as well as layers of GO covering the ZnO NRs' top surface. The Raman study demonstrates the combination peak of GO and ZnO, hence proving the GO layer's successful coating. After the GO coating, decrease in the bandgap of the synthesized photocatalyst was detected by PL and UV–Vis absorption measurements. Under UVC exposure with treatment time of 6 h, the degradation of MB with ZnO NRs/GO photocatalyst reached a degradation percentage of 97.86%, which is greater than the degradation percentage achieved using pristine ZnO NRs, which is 93.28%. The results validated that the coating of GO enhances the photocatalytic activity of the host material, ZnO NRs.  相似文献   
104.
近年来,微纳米银花状球结构的化学制备技术备受人们关注。阐述了微纳米银花状球结构的化学还原沉淀制备技术,探讨化学化学还原沉淀制备花状球的形成机理。银花状球由纳米片或棒等其他纳米形貌构成,因此表现出独特的光、催化等性能,在催化、生物等方面具有巨大潜在应用。  相似文献   
105.
TiO2-graphene (P25-GR, PG) nanocomposite was fabricated with P25 and graphite oxide through a hydrothermal method, and then Ag nanoparticles (Ag NPs) was assembled in P25-GR (Ag-P25-GR, APG) under microwave-assisted chemical reduction. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscopy (TEM), photoluminescence spectrum (PL), UV–vis absorption spectrum (UV–vis) and Raman spectrum, respectively. The results showed that Ag NPs were well dispersed on the surface of PG with metallic state. The ternary Ag-P25-GR (APG) nanocomposites possessed the extended light absorption range and more efficient charge separation properties compared to binary P25-GR (PG). Methylene blue photodegradation experiment proved that surface plasmon resonance (SPR) phenomenon had an effect on photoreaction efficiency. The corresponding hydrogen evolution rate of APG prepared with 0.002 M AgNO3 solution was 7.6 times than pure P25 and 2.7 times than PG in the test condition. The improved photocatalytic performance can be attributed to the presence of GR and SPR effect, leading to the longer lifetime of photo-generated electron–hole pairs and faster interfacial charge transfer rate. This work indicates that the photoactivity of ternary GR-based nanocomposites is superior to the binary one. We expected our work could give a new train of thought on exploration of GR-based nanocomposites.  相似文献   
106.
Novel TiO2–Ag core–shell micro‐/nanowires (TiO2 shell coating on Ag core) have been successfully prepared via a solvent–thermal method. Energy dispersive spectroscopy and X‐ray diffraction analyses revealed that the micro‐/nanowires were composed of Ag, Ti and O elements, and Ag was face‐centered cubic whereas TiO2 was mainly amorphous. Interestingly, scanning electron microscopy (SEM) and transmission electron microscopy results showed that most of the TiO2 bristles were perpendicular to and uniformly studded on the surface of the Ag cores. Subsequently, TiO2–Ag/poly(arylene ether nitrile) (PEN) composite films were prepared via a solution‐casting method in order to investigate the effect of TiO2–Ag on the PEN matrix. SEM images showed that there was good interfacial adhesion between fillers and PEN matrix owing to the special bristle‐like structure. Thermal analysis results showed that the TiO2–Ag/PEN composite films possessed excellent thermal properties endowed by the PEN matrix. The dielectric constant of the composite films increased to 9.3 at 100 Hz when the TiO2–Ag loading reached 40 wt%. Rheology measurements revealed that the network formed by TiO2–Ag was sensitive to shear stress and nearly time independent. © 2013 Society of Chemical Industry  相似文献   
107.
108.
Down-conversion structure white organic light-emitting diodes (WOLEDs), in which white light is generated by a blue emission organic light-emitting diodes (OLEDs) in combination with a color conversion layer (CCL) outside the substrate, has attracted extensive interest due to its significant advantages in low cost and stabilized white-light emissions. However, low color-conversion efficiency of CCL is still a bottleneck for the performance improvement of down-conversion WOLEDs. Here, we demonstrate an approach to enhance the color-conversion efficiency of CCL-WOLEDs by localized surface plasmon resonance (LSPR) effect. In this approach, a blend of Ag nanoparticles and polyvinyl alcohol (PVA) is solution-deposited between the blue organic light emitting diodes and color-conversion layer. Based on the LSPR effect of this modified structure, the color conversion efficiency has improved 32%, from 45.4% to 60%, resulting a 14.4% enhancement of the current efficiency, from 9.73 cd/A to 11.14 cd/A. Our work provides a simple and low-cost way to enhance the performance of down-conversion WOLEDs, which highlights its potential in illumination applications.  相似文献   
109.
Planar electrolyte supported solid oxide fuel cells were operated at 900 °C with humidified H2 for 200 h using silver mesh and paste for cathode current collection. Continuous potentiostatic tests at 0.7 V appeared to induce migration of Ag towards electrode-electrolyte interphase, while continuous OCV tests caused no mass transport. Similar SOFCs fueled by coal syngas at 850 °C using Ag for both anode and cathode current collection indicated little, if any, Ag migration; providing the possibility of employing Ag for 100 h laboratory scale tests using coal-derived syngas. Use of high temperature steam, carbon dioxide and carbon monoxide did not result in the formation of silver carbonates.  相似文献   
110.
Au-modified CdS nanorods (100–200 nm × 5–10 nm) are synthesized via two different techniques, namely photodeposition and doping. The prepared samples are characterized by x-ray powder diffraction, transmission electron microscopy (TEM), and UV–vis and fluorescence spectroscopy. X-ray diffraction study confirmed the hexagonal phase of bare and Au-CdS samples, whereas, 5 wt% Au3+ doping into CdS resulted in a slight distortion in the crystal structure toward higher degree side. TEM images revealed the fine distribution of Au nanodeposits of size in the range of 2.5–4.5 nm on to the CdS surface in the photodeposited sample. The optical spectrum shows a significant red-shift in absorption onset (485 nm → 515 nm) and band-edge emission (505 nm → 512 nm) of CdS nanorods with the replacement of certain Cd2+ ions with Au3+. The influence of Au photodeposition and doping in CdS nanorods was comparatively tested by photooxidation of RhB (50 ppm) dye aqueous solution under direct sunlight irradiation (35–40 mWcm?2). Our results point out that 5 wt% Au3+ doping into CdS nanorods remarkably improved its activity and stability due to homogeneous dispersion of charge throughout the crystal, quick Fermi level equilibration, and an improvement in ionic bond formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号