首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38295篇
  免费   2942篇
  国内免费   1658篇
电工技术   2138篇
综合类   1386篇
化学工业   8912篇
金属工艺   1253篇
机械仪表   1599篇
建筑科学   579篇
矿业工程   308篇
能源动力   11685篇
轻工业   2823篇
水利工程   98篇
石油天然气   1177篇
武器工业   236篇
无线电   2970篇
一般工业技术   3442篇
冶金工业   1147篇
原子能技术   1763篇
自动化技术   1379篇
  2024年   95篇
  2023年   787篇
  2022年   1726篇
  2021年   2394篇
  2020年   1581篇
  2019年   1491篇
  2018年   1204篇
  2017年   1402篇
  2016年   1325篇
  2015年   1207篇
  2014年   2164篇
  2013年   2732篇
  2012年   2340篇
  2011年   3463篇
  2010年   2476篇
  2009年   2207篇
  2008年   2131篇
  2007年   2108篇
  2006年   1796篇
  2005年   1423篇
  2004年   1179篇
  2003年   950篇
  2002年   878篇
  2001年   749篇
  2000年   573篇
  1999年   434篇
  1998年   374篇
  1997年   319篇
  1996年   255篇
  1995年   200篇
  1994年   169篇
  1993年   141篇
  1992年   125篇
  1991年   86篇
  1990年   65篇
  1989年   61篇
  1988年   45篇
  1987年   29篇
  1986年   33篇
  1985年   40篇
  1984年   26篇
  1983年   14篇
  1982年   26篇
  1981年   11篇
  1980年   19篇
  1979年   9篇
  1978年   4篇
  1975年   2篇
  1959年   11篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
911.
Nickel modified rhodanine (Rh) self-assembled monolayer films (Rh-SAM/Ni) were fabricated on copper from 10.0 mM Rh containing methanol. The films were characterized with the help of scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX) techniques. The methanol oxidation activity of the Rh-SAM/Ni electrode was tested in 1.0 M methanol containing 0.1 M KOH solution using many electrochemical techniques. The results indicated that well-ordered and very homogeneously distributed Rh-SAM films were assembled over the copper surface. The rate of methanol electrooxidation reaction can be enhanced by modifying copper surface with Rh-SAM/Ni multi-layer film. The enhanced activity was related to increasing active sites over the surface for adsorption and oxidation of methanol as well as facilitating oxidation or desorption of adsorpted intermediates of the process. It was suggested that the Rh-SAM layer could be a candidate supporting material for fabricating direct methanol fuel cell (DMFCs) anodes.  相似文献   
912.
Operational rules and control strategies of the chemically recuperated gas turbine (CRGT) in the marine propulsion are investigated in this paper. The Minimization of Gibbs free energy method is used to calculate the diesel-steam reforming reaction which products synthetic hydrogen rich fuels, and a universal model of the chemical regenerator which is easily applied to different application environments is created. The hydrogen production and hydrogen molar fraction are investigated to verify that the CRGT improve the combustion performances under low working conditions. Off-design calculations are performed to derive proper operational rules, and transient calculations are performed to investigate the best control strategies for the systems. The modelling approach of the chemical regenerator can be generally used in the chemically recuperated gas turbine. The elaborate operational rules can greatly improve the thermal efficiencies under every working condition. The system using synchronous control strategies have better regulation speed and operation stability than that using asynchronous control strategies.  相似文献   
913.
Environmental benefits are one of the main motivations encouraging the use of natural gas as fuel for internal combustion engines. In addition to the better impact on pollution, natural gas is available in many areas. In this context, the present work investigates the effect of hydrogen addition to natural gas in dual fuel mode, on combustion characteristics improvement, in relation with engine performance. Various hydrogen fractions (10, 20 and 30 by v%) are examined. Results showed that natural gas enrichment with hydrogen leads in general to an improved gaseous fuel combustion, which corresponds to an enhanced heat release rate during gaseous fuel premixed phase, resulting in an increase in the in-cylinder peak pressure, especially at high engine load (4.1 bar at 70% load). The highest cumulative and rate of heat release correspond to 10% Hydrogen addition. The combustion duration of gaseous fuel combustion phase is reduced for all hydrogen blends. Moreover, this technique resulted in better combustion stability. For all hydrogen test blends, COVIMEP does not exceed 10%. However, no major effect on combustion noise was noticed and the ignition delay was not affected significantly. Regarding performance, an important improvement in energy conversion was obtained with almost all hydrogen blends as a result of improved gaseous fuel combustion. A maximum thermal efficiency of 32.5%, almost similar to the one under diesel operation, and a minimum fuel consumption of 236 g/kWh, are achieved with 10% hydrogen enrichment at 70% engine load.  相似文献   
914.
The exploration of efficient catalysts toward hydrogen evolution reaction (HER) is still an urgent task. In this paper, Ni/Mo/Cu/C and Ni/Mo/C electrode were obtained by conventional pulse voltammetry, which acted as cathode in microbial electrolysis cells (MECs). The prepared samples are analyzed using SEM, XRD, XPS and electrochemical analysis techniques. Results indicated that the Ni/Mo/Cu coating has a rough and globular structure and presents high current density, a lower Tafel slope of 23.9 mV/dec than 30 mV/dec of Pt, which exceeds the electrochemical activity of Pt electrode. Its remarkably enhanced electrocatalytic activity is attributed to the high surface area, high conductivity as well as synergistic interaction among Ni, Mo and Cu.  相似文献   
915.
The development of microbial fuel cells (MFCs) into a new type of carbon-neutral wastewater treatment technology requires efficient and low-cost oxygen reduction reaction catalysts in air cathodes. The use of raw soybean powder was investigated for synthesizing Fe–N–C ORR catalysts in a sacrificial SiO2 support method. ZnCl2 etching in the synthesis was found to facilitate the formation of hierarchical porous structures of Fe–N–C catalysts. Fe–N–C(1-1) catalyst synthesized with an optimal soybean/ZnCl2 mass ratio of 1:1 exhibited the highest ORR activity in air cathodes. The use of the obtained Fe–N–C(1-1) catalyst enables a maximum power production of ~0.480 mW cm−2 in MFCs, higher than commercial Pt/C (0.438 mW cm−2) with the same catalyst loading of 2 mg cm−2. Long-term MFC operations demonstrated that the Fe–N–C synthesized from raw soybean have high stability and toxic tolerance, indicating that abundant low cost soybean biomass is a potential material for ORR catalyst development in MFC applications.  相似文献   
916.
Direct methanol fuel cells (DMFCs) had been attracted considerable attention for its advantages of high energy density, simplified systems and readily transportation and storage of methanol. However, the notoriously sluggish kinetics of methanol oxidation reaction (MOR) of the anode reaction, had greatly affected the commercialization of DMFCs. On one hand, Pt based catalyst are still the most effective MOR catalysts, while the high cost caused by the high loadings of electrocatalyst to compensate the low MOR activity impedes the wide accessible of DMFCs. In addition, the occurrence of catalyst poisoning owing to the strong interaction between Pt and carbon monoxide (CO) generated during the MOR processing, further leading to the fast decay in the performance and stability of MOR electrocatalysts. Two-dimensional (2D) Pt based nanostructures is regarded to be one promising and effective class of MOR electrocatalysts, and attracted much attention due to the high electron mobility, highly exposed active sites, and extraordinary thermal conduction. In this review, the mechanism of MOR was firstly introduced, and then the synthesis conditions, structure characteristics and methanol oxidation performances both in acidic and alkaline dielectric of 2D Pt based nanocatalysts were introduced. Subsequently, we briefly analyzed the structural characteristics of 2D Pt based nanocatalysts and their advantages, including the low platinum loadings, high specific surface area and majority of atomic active sites exposed. Finally, the opportunities and challenges for designing of advanced 2D Pt based nanocatalysts was proposed and discussed.  相似文献   
917.
In this study, a new solar-based fuel cell-powered oxygenation and ventilation system is presented for COVID-19 patients. Solar energy is utilized to operate the developed system through photovoltaic panels. The method of water splitting is utilized to generate the required oxygen through the operation of a proton exchange membrane water electrolyser. Moreover, the hydrogen produced during water splitting is utilized as fuel to operate the fuel cell system during low solar availability or the absence of solar irradiation. Transient simulations and thermodynamic analyses of the developed system are performed by accounting for the changes in solar radiation intensities during the year. The daily oxygen generation is found to vary between 170.4 kg/day and 614.2 kg/day during the year. Furthermore, the amount of daily hydrogen production varies between 21.3 kg/day and 76.8 kg/day. The peak oxygen generation rate attains a value of 18.6 g/s. Moreover, the water electrolysis subsystem entails daily exergy destruction in the range of 139.9–529.7 kWh. The maximum efficiencies of the developed system are found to be 14.3% energetically and 13.4% exergetically.  相似文献   
918.
This study focuses on analysis of a 12-bed vacuum pressure-swing adsorption (VPSA) process capable of purifying hydrogen from a ternary mixture (H2/CO2/CO 75/24/1 mol%) derived from methanol-steam reforming. The process produces 9 kmol H2/h with less than 2 ppm and 0.2 ppm of CO2 and CO, respectively, to supply a polymer electrolyte membrane fuel cell. The process model is developed in Aspen Adsorption® using the “uni-bed” approach. A parametric study of H2 purity and recovery with respect to adsorption pressure, adsorbent height, activated carbon:zeolite ratio, feed composition, and number of beds is performed. Results show 12-bed VPSA can meet the H2 purity goals, with H2 recovery as high as 75.75%. Adsorption occurs at 7 bar, the column height is 1.2 m, and the adsorbent ratio is 70%:30%. A 4-bed VPSA can achieve the same purity goals as the 12-bed process, but H2 recovery decreases to 61.34%.  相似文献   
919.
This article develops and tests an ethnographic decision model (EDM) of hydrogen fuel cell vehicle (FCV) adoption using interviews with California residents that either actually adopted an FCV or “seriously considered” doing so before deciding against it. We developed an initial model from 25 semi-structured interviews in which respondents self-described their decision-making processes. We iteratively tested and refined the model in a second round of 53 structured interviews. The final model consists of a first stage that assesses FCV adoption feasibility and a second stage that compares FCVs to other vehicle types. The model ultimately correctly predicts 86.8% of cases in the sample. In the first stage, respondents preferred to satisfy their need for a primary refueling station near home but a substantial number were willing to rely on a station near or on the way to work or other destination. Most drivers required a convenient backup station and a means of managing long-distance trips. Vehicle size options eliminated a few respondents. None rejected FCV adoption due to insufficient driving range. In the second stage, nearly all drivers engaged in some kind of cost comparison, though the factors considered varied greatly. Most opted for what they viewed as the less costly option, although a few FCV adopters and non-adopters were willing to pay more for their more preferred option. EDM is a promising qualitative research method for generating insights into how people navigate the decision whether or not to get an alternative-fuel vehicle.  相似文献   
920.
An ideal polymer electrolyte membrane fuel cell (PEMFC) is one that continuously generates electricity as long as hydrogen and oxygen (or air) are supplied to its anode and cathode, respectively. However, internal and/or external conditions could bring about the degradation of its electrodes, which are composed of nanoparticle catalysts. Particularly, when the hydrogen supply to the anode is disrupted, a reverse voltage is generated. This phenomenon, which seriously degrades the anode catalyst, is referred to as cell reversal. To prevent its occurrence, iridium oxide (IrO2) particles were added to the anode in the membrane-electrode assembly of the PEMFC single-cells. After 100 cell reversal cycles, the single-cell voltage profiles of the anode with Pt/C only and the anodes with Pt/C and various IrO2 contents were obtained. Additionally, the cell reversal-induced degradation phenomenon was also confirmed electrochemically and physically, and the use of anodes with various IrO2 contents was also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号