首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1866篇
  免费   40篇
  国内免费   15篇
电工技术   113篇
综合类   22篇
化学工业   603篇
金属工艺   101篇
机械仪表   13篇
建筑科学   33篇
矿业工程   45篇
能源动力   650篇
轻工业   114篇
水利工程   2篇
石油天然气   71篇
无线电   14篇
一般工业技术   66篇
冶金工业   56篇
原子能技术   8篇
自动化技术   10篇
  2024年   2篇
  2023年   48篇
  2022年   87篇
  2021年   71篇
  2020年   73篇
  2019年   74篇
  2018年   58篇
  2017年   45篇
  2016年   30篇
  2015年   22篇
  2014年   114篇
  2013年   111篇
  2012年   80篇
  2011年   158篇
  2010年   123篇
  2009年   119篇
  2008年   93篇
  2007年   81篇
  2006年   55篇
  2005年   51篇
  2004年   51篇
  2003年   40篇
  2002年   34篇
  2001年   34篇
  2000年   44篇
  1999年   49篇
  1998年   31篇
  1997年   24篇
  1996年   22篇
  1995年   17篇
  1994年   20篇
  1993年   12篇
  1992年   15篇
  1991年   13篇
  1990年   9篇
  1989年   2篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有1921条查询结果,搜索用时 15 毫秒
41.
The behavior of submicron- and nano-sized NaNbO3 powder compacts during conventional sintering was studied using optical dilatometry and microstructure analysis. Microstructure-development trajectories revealed the dominance of grain growth during the initial sintering stage, while densification occurred only during later stages. Surface diffusion with low activation energy in the range of 50–60 kJ/mol was found to be the dominant material-transport mechanism during the initial sintering stage. The early activation of surface diffusion reduced the sintering driving force, decreased the rate of the densifying mechanisms and was thus identified as the main cause for poor densification of NaNbO3. Same explanation could be valid also for other alkaline niobate based lead-free piezoelectric ceramics. Finally, alternative sintering methods are discussed and the efficiency of the pressure-assisted sintering was demonstrated in successful production of highly-dense fine-grained NaNbO3 ceramics, with relative density and grain size of 98% and 700 nm, respectively.  相似文献   
42.
In this work different amorphous melt-spun Fe-alloys (Fe82B18, Fe80Si10B10, Fe60Co20Si10B10) were investigated as cathode materials for the alkaline electrolysis of water. In particular, the influence of cobalt as well as the metalloids boron and silicon on the activity for the hydrogen evolution reaction (HER) was studied in 1 M KOH at 298 K using cyclic voltammetric, galvanostatic and polarization techniques. The electrocatalytic activity was evaluated in the view of the overpotential. It was found that cyclic voltammetric techniques can be used to activate the melt-spun Fe-alloys strongly. Different cyclic voltammetric activation procedures are discussed and the influence of the sweep rate and the potential window on the HER activity was elucidated. The experimental data indicate that the addition of metalloids and, most importantly, of cobalt improves the HER activity of the materials. Thus, the overpotential can be reduced by 200 mV compared to polycrystalline Ni.  相似文献   
43.
The rheological performance of pectin-enriched products extracted from red beet (Beta vulgaris L. var. conditiva) root by-products was evaluated in the present work. They were extracted through an alkaline pre-treatment with or without a subsequent enzymatic (hemicellulase or cellulase) hydrolysis at pH 5.2. Flow assays performed with 2.00% w/v-pectin aqueous systems showed pseudoplastic (flow index, n ≈ 0.4 or 0.8) or Newtonian (n = 1.0) behaviour after fitting of experimental data to Ostwald’s law, also showing poor thickening effect. When Ca2+ was added to water with the same pectin concentration, true gels developed as confirmed by the mechanical spectra obtained through dynamic assays. Junction zones of homogalacturonan (HG) side chains mediated by Ca2+ were able to build up rigid networks in water.Isolated pectins (2.00% w/v) were also used to constitute milk model systems. Whole and skimmed milk were used at two different concentrations. Milk systems showed more transient and weaker gel networks when compared to Ca2+-aqueous systems, and were associated to the formation of a [κ-casein?calcium cross linked low methoxyl pectin] complex dampened by the included milk fat globules. Relaxation spectra of pectin-milk systems were in general extended to large relaxation times (104 s) for all isolated fractions studied, which is typical of structured systems. Since all pectin fractions showed very similar chemical composition and molecular weight (average value and distribution), it was suggested that some differences in the rheological performance of each pectin product came from the different length of arabinans and distribution of rhamnose kinks (RG-I, random coil) as well as from the length of demethylated HG chains (semi-flexible coils).The results of this research show that the pectin-enriched fractions isolated from red beet root wastes are useful as additives in food formulation.  相似文献   
44.
Nafion, a perfluoro-sulfonic acid (PFSA)-based polymer, is a promising material that will help realize the commercialization of proton exchange membrane-based fuel cells (PEMFCs) and proton exchange membrane water electrolyzers (PEMWEs). However, Nafion also exhibits reduced mechanical and dimensional stability and increased hydrogen crossover under cell operating conditions in real operational settings, that is, in a hydrated state or in water at 60–80 °C. These factors may negatively affect cell efficiency and durability and thus must be addressed. To overcome these limitations, polyamide-coated Nafion composite membranes were developed for the first time via interfacial polymerization. 3,5-Diaminobenzoic acid (DABA), which contains carboxyl functional groups, was used as a monomer to add hydrophilicity to the membrane, and the coating layer thickness was controlled by adjusting the DABA content. A nanoscale polyamide (PA) layer was coated on the surface of Nafion-212 to fabricate a membrane, PA-c3-Nafion. PA-c3-Nafion was found to show ion conductivity 13.6% higher than that of a pristine Nafion-212 membrane at 80 °C, while providing improved mechanical performance and dimensional stability. In particular, at 95% RH, the hydrogen permeability of PA-c3-Nafion was 16.4% lower than that of Nafion-212 while, in a fully hydrated state, the hydrogen permeability of PA-c3-Nafion was 21.2% lower than that of Nafion-212. The LSV test results also showed that the degree of hydrogen crossover was significantly lower in PA-c3-Nafion than in Nafion-212.  相似文献   
45.
The behaviour of fresh and hardened alkali-activated slag (AAS) and OPC concretes was compared and the effect of mixing time assessed. OPC and AAS concrete slump and rheological results proved to differ, particularly when the slag was activated with waterglass (WG). The nature of the alkaline activator was the key determinant in AAS concrete rheology. Bingham models afforded a good fit to all the OPC and AAS concretes. In OPC and NaOH-activated AAS concretes, longer mixing had an adverse effect on rheology while improving hardened performance only slightly. In WG-AAS concrete, longer mixing times, improved mechanical properties and also rheological behaviour was enhanced, in which those conditions were required to break down the microstructure. Longer mixing raised thixotropy in OPC and NaOH-activated AAS concretes, but lowered the value of this parameter in waterglass-activated slag concrete.  相似文献   
46.
The construction of efficient and low-cost electrocatalysts for oxygen evolution reactions (OER) to replace precious catalysts is a necessity to achieve economic production of hydrogen. Herein, we report an efficient tri-metallic electrocatalysts for the OER that is prepared by incorporate nickel, cobalt and iron cations on Triton X-100/phosphotungstic acid organic-inorganic composite without utilize any binders or energy consumer procedure. Considering to the synergy effect of simultaneous absorption of NiCoFe cations on composite substrate, the as-made tri-metallic catalyst exhibits excellent OER activity with a small overpotential of 210 and 330 mV at a current density of 10 and 100 mA cm?2, respectively. Moreover, remarkable trends in electrocatalytic activity of mono-, bi- and tri-metallic electrocatalysts at low (10 mA) and high (100 mA) current density are observed. In addition, this new families of non-precious metal catalyst shows long-term durability in 1 M KOH.  相似文献   
47.
《Ceramics International》2021,47(19):26847-26855
Nickel incorporated on MoS2/MXene composites (NiMoS2/MXene) via a wet impregnation method is used as an anode electrode material for methanol electro-oxidation. X-ray diffraction, X-ray photoelectron spectra, and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy techniques were used for the confirmation of MoS2/MXene formation. Textural properties of catalysts were obtained in N2 adsorption-desorption analysis. Electrochemical measurements in 0.1 M KOH demonstrated the better electrocatalytic activity of NiMoS2/MXene catalysts. The NiMoS2/MXene system exhibited enhanced electrocatalytic activity for methanol oxidation due to low onset potential offered by Ni, high tolerance toward CO poisoning by MoS2, and high conductivity and high mechanical stability of MXene. NiMoS2-3/MXene catalysts exhibited high current density, electrochemical active surface area, long-term stability, and low Rct value. Based on the electrochemical results, NiMoS2/MXene catalysts is a highly electroactive anode material. Hence can be utilized in fuel cell applications such as Direct Methanol Fuel Cell (DMFC).  相似文献   
48.
An important difficulty associated with alkaline water electrolysis is the rise in anode overpotential attributable to bubble coverage of the electrode surface. For this study, a system with a high-speed video camera was developed, achieving in-situ observation of bubble generation on an electrode surface, monitoring an area of 1.02 mm2 at 6000 frames per second. The relation between polarization curve (current density up to 3.0 A cm?2) and oxygen bubble generation behavior on nickel electrodes having cylindrical wires and rectangular wires of different sizes (100–300 μm) was clarified. The generated bubbles slide upward, contacting the electrode surface and detaching at the top edge. Observations indicate that small electrodes have short bubble residence time and thin bubble covering layer on the electrode. As a result, the small electrode diameter contributes to smaller overpotential at high current density.  相似文献   
49.
The development of hydrogen evolution activity (HER) electrocatalyst that can run durably and efficiently under the large current density is of special significance but still challengeable for the massive production of hydrogen. Herein, a CoP/Ni(OH)2 nanowire catalysts grown on Co foam (CF) with a three-dimensional heterojunction structure has been successfully prepared by electrodepositing nickel hydroxide on the surface of cobalt phosphide. The prepared CoP/Ni(OH)2–15 min sample reveals a superior HER activity and stability. It merely requires ultralow overpotentials of 108 and 175 mV to 100 and 500 mA cm?2, respectively. In addition, the long-term stability test shows that the catalyst (CoP/Ni(OH)2–15 min) can operate stably for at least 70 h at 400 mA cm?2. Utilizing NiFe-LDH/IF with high OER activity, the NiFe-LDH/IF || CoP/Ni(OH)2–15 min catalyst system possesses the same outstanding performance for overall water splitting (OWS), which can accomplish ≈ 500 mA cm?2 at 1.74 V in 1 M KOH electrolyte. Moreover, the NiFe-LDH/IF || CoP/Ni(OH)2–15 min couple can work for more than 80 h at 500 mA cm?2, indicating its a great prospect in the area of electrolysis water. Such excellent catalytic performance is mainly attributed to the armor effect of Ni(OH)2, which can not only promote the rapid decomposition of water molecules, but also prevent the loss of phosphorus and enhance the synergistic effect of CoP and Ni(OH)2. This work can offer a significant reference for the design with high-performance and durable transition metal phosphide electrocatalysts.  相似文献   
50.
The synergistic achievement of low-cost earth-abundant electrocatalysts and high efficiency to meet renewable energy need is highly desirable yet challenging. Here, we developed a simple Ni foam self -templating route for V-doped Ni3S2 nanosheet arrays through in situ formation of metal-organic frameworks (MOFs) combined with subsequent conversion. The as-prepared MOF-V-Ni3S2/NF catalyst delivers outstanding electrocatalytic performance in the alkaline solution, which requires low overpotentials of 118.1 mV @10 mA cm?2 and 268 mV @10 mA cm?2 for hydrogen evolution reaction and oxygen evolution reaction, respectively. The V-doping and MOF-derived 3D hieratical nanostructure play a vital role in the catalytic process, which provides efficient active sites and large surface areas. Furthermore, an alkaline electrolyzer was assembled with two pieces of MOF-V-Ni3S2/NF, which achieves efficient water splitting at 1.58 V @10 mA cm?2. This strategy opens up new channels to synthesize MOF-based bifunctional electrocatalysts toward overall water spitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号